Abstract:
A display may have upper and lower display layers. A layer of liquid crystal material may be interposed between the upper and lower display layers. The display layers may have substrates. The display layers may include a color filter layer having an array of color filter elements on a glass substrate and a thin-film transistor layer having a layer of thin-film transistor circuitry on a glass substrate. Dielectric layers within the display layers such as dielectric layers within the thin-film transistor layer may have differing indices of refraction. Reflections and color shifts due to index of refraction discontinuities may be minimized by interposing graded index dielectric layers between adjacent layers with different indices. The graded index layers may be formed from structures with a continuously varying index of refraction or structures with a step-wise varying index of refraction.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The color filter layer may have an array of color filter elements on a transparent substrate. The array of color filter elements may include more than three colors. Colored photoimageable polymer layers may be combined to form some of the color filter elements. The color filter may have cyan, magenta, and yellow color filter elements each formed from a respective single layer of cyan, magenta, and yellow polymer and may have blue elements formed by overlapping cyan and magenta polymer, green elements formed by overlapping cyan and yellow polymer, and red elements formed by overlapping magenta and yellow polymer. Filters with white elements may also be provided.
Abstract:
A display may have a thin-film transistor layer and color filter layer. The display may have an active area and an inactive border area. Light blocking structures in the inactive area may prevent stray backlight from a backlight light guide plate from leaking out of the display. The thin-film transistor layer may have a clear substrate, a patterned black masking layer on the clear substrate, a clear planarization layer on the black masking layer, and a layer of thin-film transistor circuitry on the clear planarization layer. The black masking layer may be formed from black photoimageable polyimide. The clear planarization layer may be formed from spin-on glass. The light blocking structures may include a first layer formed from a portion of the black masking layer and a second layer such as a layer of black tape on the underside of the color filter layer.
Abstract:
An electronic device may include a display having an array of display pixels on a substrate. The display pixels may be organic light-emitting diode display pixels or display pixels in a liquid crystal display. In an organic light-emitting diode display, hybrid thin-film transistor structures may be formed that include semiconducting oxide thin-film transistors, silicon thin-film transistors, and capacitor structures. The capacitor structures may overlap the semiconducting oxide thin-film transistors. Organic light-emitting diode display pixels may have combinations of oxide and silicon transistors. In a liquid crystal display, display driver circuitry may include silicon thin-film transistor circuitry and display pixels may be based on oxide thin-film transistors. A single layer or two different layers of gate metal may be used in forming silicon transistor gates and oxide transistor gates. A silicon transistor may have a gate that overlaps a floating gate structure.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A liquid crystal layer may be located between the color filter layer and the thin-film transistor layer. The color filter layer may have an array of color filter elements on a transparent substrate. The array of color filter elements may include more than three colors. Colored photoimageable polymer layers may be combined to form some of the color filter elements. The color filter may have cyan, magenta, and yellow color filter elements each formed from a respective single layer of cyan, magenta, and yellow polymer and may have blue elements formed by overlapping cyan and magenta polymer, green elements formed by overlapping cyan and yellow polymer, and red elements formed by overlapping magenta and yellow polymer. Filters with white elements may also be provided.
Abstract:
A display may have a thin-film transistor layer and a color filter layer. The display may include light blocking structures formed on a transparent substrate. In one arrangement, a clear planarization layer may be formed over the light blocking structures. The thin-film transistor layer may be formed over the planarization layer. The color filter layer may be integrated with the thin-film transistor layer. At least light blocking structures and the planarization layer should be formed from high temperature resistance material. In another arrangement, the color filter layer may be formed on the light blocking structures. A clear planarization layer may then be formed over the color filter layer. The thin-film transistor layer may be formed on the planarization layer. In this arrangement, the color filter layer also needs to be formed from thermal resistance material.
Abstract:
A display may have a color filter layer and a thin-film transistor layer. A layer of liquid crystal material may be located between the color filter layer and the thin-film transistor (TFT) layer. The TFT layer may include thin-film transistors formed on top of a glass substrate. A passivation layer may be formed on the thin-film transistor layers. A first low-k dielectric layer may be formed on the passivation layer. Data line routing structures may be formed on the first low-k dielectric layer. A second low-k dielectric layer may be formed on the first low-k dielectric layer. A common voltage electrode and associated storage capacitance may be formed on the second low-k dielectric layer. The first and second low-k dielectric layers may be formed from material having substantially similar refractive indices to maximize backlight transmittance and may have appropriate thicknesses so as to minimize parasitic capacitive loading.