Abstract:
An electronic device may have a display with an array of pixels. The device may have an array of components such as an array of light sensors for capturing fingerprints of a user through an array of corresponding transparent windows in the display. A capacitive touch sensor, proximity sensor, force sensor, or other sensor may be used by control circuitry in the device to monitor for the presence of a user's finger over the array of light sensors. In response, the control circuitry can direct the display to illuminate a subset of the pixels, thereby illuminating the user's finger and causing reflected light from the finger to illuminate the array of light sensors for a fingerprint capture operation. The display may have display driver circuitry that facilitates the momentary illumination of the subset of pixels with uniform flash data while image data is displayed in other portions of the display.
Abstract:
An electronic device may have a display with an array of pixels that display images for a user. The electronic device may have an ambient light sensor for gathering ambient light information. A subset of the pixels in the array of pixels may overlap the ambient light sensor so that ambient light passing through the subset of pixels may be measured. Each pixel may have an emission enable transistor coupled in series with a light-emitting diode. Control circuitry in the electronic device may disable the subset of pixels to reduce stray light during ambient light measurements while enabling remaining pixels in the array of pixels to display an image. Ambient light sensor circuitry may gather ambient light sensor measurements over one or more periods by using transfer transistors to transfer change from the photodetectors to charge storage capacitors formed from floating diffusions in a common substrate.
Abstract:
An electronic device may have a display with an array of pixels. The device may have an array of components such as an array of light sensors for capturing fingerprints of a user through an array of corresponding transparent windows in the display. A capacitive touch sensor, proximity sensor, force sensor, or other sensor may be used by control circuitry in the device to monitor for the presence of a user's finger over the array of light sensors. In response, the control circuitry can direct the display to illuminate a subset of the pixels, thereby illuminating the user's finger and causing reflected light from the finger to illuminate the array of light sensors for a fingerprint capture operation. The display may have display driver circuitry that facilitates the momentary illumination of the subset of pixels with uniform flash data while image data is displayed in other portions of the display.
Abstract:
An electronic device is provided. The electronic device includes a display that is configured to show content that includes a plurality of frames. The plurality of frames includes a first frame that is associated with a pre-transition value. The plurality of frames also includes a second frame that is associated with a current frame value that corresponds to a first luminance. Additionally, the electronic device is configured to determine an overdriven current frame value corresponding to a second luminance that is greater than the first luminance. The electronic device is also configured to display the second frame using the overdriven current frame value.
Abstract:
An electronic device may have a display with an array of pixels. The device may have an array of components such as an array of light sensors for capturing fingerprints of a user through an array of corresponding transparent windows in the display. A capacitive touch sensor, proximity sensor, force sensor, or other sensor may be used by control circuitry in the device to monitor for the presence of a user's finger over the array of light sensors. In response, the control circuitry can direct the display to illuminate a subset of the pixels, thereby illuminating the user's finger and causing reflected light from the finger to illuminate the array of light sensors for a fingerprint capture operation. The display may have display driver circuitry that facilitates the momentary illumination of the subset of pixels with uniform flash data while image data is displayed in other portions of the display.
Abstract:
A display may have an array of display pixels. Digital display data may be received by a digital-to-analog converter that converts the digital display data to analog display data. The magnitudes of the analog display data signals can be controlled by a regulated voltage received by the digital-to-analog converter. A brightness controller may have multiple peak luminance control (PLC) profiles. In accordance with an embodiment, a brightness setting may be processed by a lookup table to identify a pair of PLC profiles that is interpolated in order to obtain the desired regulated voltage. In accordance with another embodiment, a single PLC profile may be used that is a function of a combined parameter that takes into account both average frame luminance and the brightness setting. In accordance with yet another embodiment, a lookup table that specifies brightness setting offset values may be used to directly modulate the brightness setting.
Abstract:
An electronic device includes a transparent surface, a light emitting device that emits light through the transparent surface, and a light sensor for receiving ambient light and providing an ambient light value. A retarder and a linear polarizer are placed between the transparent surface and the light emitting device. The retarder and linear polarizer may attenuate internal reflections from the transparent surface. The light sensor may have two channels and a second linear polarizer may attenuate the ambient light directed toward a second channel. A second retarder may be used with the second linear polarizer to attenuate the ambient light directed toward the second channel. A light detection circuit may use the difference between the two channels of the light sensor to provide the ambient light value.
Abstract:
A display may receive image data to be displayed for a user of an electronic device. Display driver circuitry in the display may analyze the data to detect static data. The image data may contain static frames of data or static portions of a frame of data. In response to detection of static data, the display driver circuitry can take actions to avoid display damage due to burn-in effects. The display driver circuitry may reduce a peak luminance value associated with a peak luminance control algorithm, may reduce display brightness, may map image data to reduced brightness levels, or may take other actions to ensure that display pixels in the display are not damaged. Temperature information may be used in determining how to classify information as static data and in determining how significantly to reduce display pixel drive currents in response to the detection of static image data.
Abstract:
An organic light-emitting diode display may have an array of pixels. Each pixel may have multiple subpixels of different colors. To avoid undesired color shifts when operating the display, the display may be configured so that subpixels of different colors are not coupled to each other through parasitic capacitances. The subpixels may include red, green, and blue subpixels or subpixels of other colors. Each subpixel may include an organic light-emitting diode having an anode and a cathode. The anode of each organic light-emitting diode may be coupled to a respective storage capacitor. Capacitive coupling between subpixels can be minimized by configuring the subpixel structures of each pixel so that the storage capacitors of the subpixels do not overlap the anodes of other subpixels in the pixel. Anode and capacitor overlap with subpixel data lines may also be reduced or eliminated.
Abstract:
A display may receive image data to be displayed for a user of an electronic device. Display driver circuitry in the display may analyze the data to detect static data. The image data may contain static frames of data or static portions of a frame of data. In response to detection of static data, the display driver circuitry can take actions to avoid display damage due to burn-in effects. The display driver circuitry may reduce a peak luminance value associated with a peak luminance control algorithm, may reduce display brightness, may map image data to reduced brightness levels, or may take other actions to ensure that display pixels in the display are not damaged. Temperature information may be used in determining how to classify information as static data and in determining how significantly to reduce display pixel drive currents in response to the detection of static image data.