Abstract:
A multilayer composite is provided. The composite may include a plurality of metallic glass layers interleaved with a plurality of polymer layers. The composite may have a thickness of up to 100 microns. The composite may have a fatigue strength of at least 1.5 times of the fatigue strength of a monolithic metallic glass having the same thickness as the composite and the same chemical composition as the metallic glass layer.
Abstract:
A housing for a portable electronic device is disclosed. The housing is composed of yttria-sensitized zirconia. Yttria-sensitized zirconia has from about 1.5 to about 2.5 mole percent yttria, and more typically about 2 mole percent yttria, and most typically 2 mole percent yttria, in zirconia. Yttria-sensitized zirconia is both tough and able to limit the formation and propagation of micro-cracks. Methods for manufacturing yttria-sensitized zirconia composed housings are also disclosed.
Abstract:
A method of manufacturing a housing of an electronic device includes determining a sintering profile configured to produce a selected color at a selected depth within a wall of the housing, sintering a ceramic housing precursor in accordance with the determined sintering profile, thereby forming the housing, and removing material from the housing up to the selected depth.
Abstract:
Various embodiments provide apparatus and methods for melting materials and for containing the molten materials within melt zone during melting. Exemplary apparatus may include a vessel configured to receive a material for melting therein; a load induction coil positioned adjacent to the vessel to melt the material therein; and a containment induction coil positioned in line with the load induction coil. The material in the vessel can be heated by operating the load induction coil at a first RF frequency to form a molten material. The containment induction coil can be operated at a second RF frequency to contain the molten material within the load induction coil. Once the desired temperature is achieved and maintained for the molten material, operation of the containment induction coil can be stopped and the molten material can be ejected from the vessel into a mold through an ejection path.
Abstract:
Described herein are methods of constructing a part having improved properties using metallic glass alloys, layer by layer. In accordance with certain aspects, a layer of metallic glass-forming powder is deposited to selected positions and then fused to a surface layer (i.e. layer below) by suitable methods such as laser heating or electron beam heating. The deposition and fusing are then repeated as need to construct the part, layer by layer. In certain embodiments, one or more sections or layers of non-metallic glass-forming material can be included as needed to form a composite final part. In certain aspects, the metallic glass-forming powder may be crystalized during depositing and fusing, or may be recrystallized during subsequent processing to provide selectively crystalized sections or layers, e.g., to impart desired functionality. In other aspects, non-metallic glass-forming materials may be deposited and fused at selected positions, e.g., to provide selective shear banding to impart improved ductile properties and plasticity. In yet other aspects, the metallic glass-forming powder or metallic glass material and non-metallic glass-forming material are deposited and fused to form a foam-like, bellow or similar structure, which is able to crumple under high stress to absorb energy under impact.
Abstract:
The disclosure is directed to methods of forming glassy alloys. A glassy alloy is cold rolled at a temperature less than Tg of the glassy alloy to form a flattened glassy alloy. Then, the cold rolled glassy alloy is thermoplastically formed at a temperature above Tg of the glassy alloy. In certain embodiments, the flattened glassy alloy may have one or more shear bands and/or micro-cracks, and the thermoplastic forming may heal the shear bands and/or micro-cracks. The resulting glassy alloy may thereby have reduced or eliminated shear bands and/or micro-cracks.
Abstract:
Described herein is a method of forming a 3D investment mold using a layer-by-layer construction (3D printing). The mold is configured for receipt of a molten alloy having a composition configured to form a bulk metallic glass (BMG) on cooling. The mold has a hollow interior between inner and outer walls. The hollow interior receives the molten alloy for molding it between the inner and outer walls of the mold. A method of casting using the 3D investment mold is also disclosed, which may include filling the mold with molten alloy, removing bubbles, quenching the molten alloy in the mold, and then removing the mold.
Abstract:
Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.
Abstract:
Disclosed herein is a bulk metallic glasses (BMG) comprising 0.0001 wt % to 0.7 wt % of Be, 0.0001 wt % to 0.2 wt % of Be, or 0.06 wt % to 0.08 wt % of Be. Be may have the effect of reducing a liquidus temperature of the BMG relative to melting temperatures of individual alloying elements of the BMG.
Abstract:
Various embodiments provide apparatus and methods for melting and introducing alloy feedstock for molding by using a hollow branch having a constraint mechanism therein. In one embodiment, a hollow branch can extend upward from a cold chamber that is substantially horizontally configured. The hollow branch including a constraint mechanism can be capable of containing an alloy feedstock for melting into the molten alloy in the hollow branch and introducing the molten alloy to the cold chamber for molding.