Abstract:
An optical filter including a near infrared absorbing layer on a glass substrate, in which adhesiveness between the glass substrate and the near infrared absorbing layer is firm, high reliability is enabled in uses under a high temperature and high humidity environment, and manufacturing yield is secured, and a high reliability solid-state imaging device having the optical filter are provided. An optical filter includes: a glass substrate; and a near infrared absorbing layer formed on one principal surface of the glass substrate, wherein the near infrared absorbing layer is obtained by reacting a composition for forming the near infrared absorbing layer on the glass substrate and the composition contains a transparent resin having a fluorene skeleton and a reactivity group; a near infrared absorbing dye; and a silane coupling agent and/or oligomer thereof having a hydrolyzable group and a functional group which have reactivity for the reactivity group.
Abstract:
There are provided a near-infrared cut filter that effectively uses near-infrared absorbing glass and a near-infrared absorbing dye and is excellent in a near-infrared shielding property, and a high-sensitivity solid-state imaging device including the same. A near-infrared cut filter includes: a near-infrared absorbing glass substrate made of CuO-containing fluorophosphate glass or CuO-containing phosphate glass; and a near-infrared absorbing layer containing a near-infrared absorbing dye (A) and a transparent resin (B), on at least one principal surface of the near-infrared absorbing glass substrate, wherein an average value of a transmittance in a 400 nm to 550 nm wavelength range is 80% or more, and an average value of a transmittance in a 650 nm to 720 nm wavelength range is 15% or less.
Abstract:
The present invention relates to an optical filter, a solid-state imaging element and an imaging device lens which contain a near infrared ray absorbing layer having a specific near infrared ray absorbing dye dispersed in a transparent resin having a refractive index of 1.54 or more, and also relates to an imaging device containing the solid-state imaging element or the imaging device lens. The near infrared ray absorbing layer has a transmittance of visible light of from 450 to 600 nm of 70% or more, a transmittance of light in a wavelength region of from 695 to 720 nm of not more than 10%, and an amount of change of transmittance of not more than −0.8.
Abstract:
To provide a manufacturing method of a composite film for laminated glass, the method enabling the high-yield manufacture of the composite film that causes less appearance failure in the obtained laminated glass, while ensuring smooth workability. A manufacturing method of a composite film composed of a resin intermediate film and a plastic film for laminated glass, including: feeding the resin intermediate film with 0.04 to 0.4 N/cm tension and the plastic film, between a two rolls whose surface temperatures are 25 to 50° C., and pressing these to obtain a laminate; and feeding the laminate between a third roll whose surface temperature is 60° C. or higher and lower than Tg of a resin in the plastic film and a fourth roll whose surface temperature is lower than this by 15 to 30° C., so as to bring the plastic film into contact with the third roll, and pressing the laminate.
Abstract:
The present invention relates to an optical filter, a solid-state imaging element and an imaging device lens which contain a near infrared ray absorbing layer having a specific near infrared ray absorbing dye dispersed in a transparent resin having a refractive index of 1.54 or more, and also relates to an imaging device containing the solid-state imaging element or the imaging device lens. The near infrared ray absorbing layer has a transmittance of visible light of from 450 to 600 nm of 70% or more, a transmittance of light in a wavelength region of from 695 to 720 nm of not more than 10%, and an amount of change of transmittance of not more than −0.8.
Abstract:
There are provided a near-infrared cut filter that effectively uses near-infrared absorbing glass and a near-infrared absorbing dye and is excellent in a near-infrared shielding property, and a high-sensitivity solid-state imaging device including the same. A near-infrared cut filter includes: a near-infrared absorbing glass substrate made of CuO-containing fluorophosphate glass or CuO-containing phosphate glass; and a near-infrared absorbing layer containing a near-infrared absorbing dye (A) and a transparent resin (B), on at least one principal surface of the near-infrared absorbing glass substrate, wherein an average value of a transmittance in a 400 nm to 550 nm wavelength range is 80% or more, and an average value of a transmittance in a 650 nm to 720 nm wavelength range is 15% or less.
Abstract:
The present invention relates to an optical filter, a solid-state imaging element and an imaging device lens which contain a near infrared ray absorbing layer having a specific near infrared ray absorbing dye dispersed in a transparent resin having a refractive index of 1.54 or more, and also relates to an imaging device containing the solid-state imaging element or the imaging device lens. The near infrared ray absorbing layer has a transmittance of visible light of from 450 to 600 nm of 70% or more, a transmittance of light in a wavelength region of from 695 to 720 nm of not more than 10%, and an amount of change of transmittance of not more than −0.8