Abstract:
An apparatus for and method of sensing multiple alignment marks in which the optical axis of a detector is divided into multiple axes each of which can essentially simultaneously detect a separate alignment mark to generate a signal which can then be multiplexed and presented to a single detector or multiple detectors thus permitting more rapid detection of multiple marks.
Abstract:
Apparatus, systems, and methods are used for detecting the alignment of a feature on a substrate using a polarization independent interferometer. The apparatus, system, and methods include optical elements that receive light that has diffracted or scattered from a mark on a substrate. The optical elements may split the diffracted light into multiple subbeams of light which are detected by one or more detectors. The diffracted light may be combined optically or during processing after detection. The system may determine alignment and/or overlay based on the received diffracted light having any polarization angle or state.
Abstract:
An alignment sensor for a lithographic apparatus is arranged and constructed to measure an alignment of a movable part of the lithographic apparatus in respect of a stationary part of the lithographic apparatus. The alignment sensor comprises a light source configured to generate a pulse train at a optical wavelength and a pulse repetition frequency, a non-linear optical element, arranged in an optical propagation path of the pulse train, the non-linear optical element configured to transform the pulse train at the optical wavelength into a transformed pulse train in an optical wavelength range, an optical imaging system configured to project the transformed pulse train onto an alignment mark comprising a diffraction grating; a detector to detect a diffraction pattern as diffracted by the diffraction grating, and a data processing device configured to derive alignment data from the detected diffraction pattern as detected by the detector.
Abstract:
An apparatus to measure the position of a mark, the apparatus including an objective lens to direct radiation on a mark using radiation supplied by an illumination arrangement; an optical arrangement to receive radiation diffracted and specularly reflected by the mark, wherein the optical arrangement is configured to provide a first image and a second image, the first image being formed by coherently adding specularly reflected radiation and positive diffraction order radiation and the second image being formed by coherently adding specularly reflected radiation and negative diffraction order radiation; and a detection arrangement to detect variation in an intensity of radiation of the first and second images and to calculate a position of the mark in a direction of measurement therefrom.
Abstract:
Systems, apparatuses, and methods are provided for determining the alignment of a substrate. An example method can include emitting a multi-wavelength radiation beam including a first wavelength and a second wavelength toward a region of a surface of a substrate. The example method can further include measuring a first diffracted radiation beam indicative of first order diffraction at the first wavelength in response to an irradiation of the region by the multi-wavelength radiation beam. The example method can further include measuring a second diffracted radiation beam indicative of first order diffraction at the second wavelength in response to the irradiation of the region by the multi-wavelength radiation beam. Subsequently, the example method can include generating, based on the measured first set of photons and the measured second set of photons, an electronic signal for use in determining an alignment position of the substrate.
Abstract:
An alignment sensor apparatus includes an illumination system, a first optical system, a second optical system, a detector system, and a processor. The illumination system is configured to transmit an illumination beam along an illumination path. The first optical system is configured to transmit the illumination beam toward a diffraction target on a substrate. The second optical system includes a first polarizing optic configured to separate and transmit an irradiance distribution. The detector system is configured to measure a center of gravity of the diffraction target based on the irradiance distribution outputted from a first polarization branch and a second polarization branch. The processor is configured to measure a shift in the center of gravity of the diffraction target caused by an asymmetry variation in the diffraction target and determine a sensor response function of the alignment sensor apparatus based on the center of gravity shift.
Abstract:
A method including: subsequent to a first device lithographic step of a device patterning process, measuring a degraded metrology mark on an object and/or a device pattern feature associated with the degraded metrology mark, the degraded metrology mark arising at least in part from the first device lithographic step on the object; and prior to a second device lithographic step of the device patterning process on the object, creating a replacement metrology mark, for use in the patterning process in place of the degraded metrology mark, on the object.
Abstract:
Systems, apparatuses, and methods are provided for detecting a particle on a substrate surface. An example method can include receiving, by a grating structure, coherent radiation from a radiation source. The method can further include generating, by the grating structure, a focused coherent radiation beam based on the coherent radiation. The method can further include transmitting, by the grating structure, the focused coherent radiation beam toward a region of a surface of a substrate. The method can further include receiving, by the grating structure, photons scattered from the region in response to illuminating the region with the focused coherent radiation beam. The method can further include measuring, by a photodetector, the photons received by the grating structure. The method can further include generating, by the photodetector and based on the measured photons, an electronic signal for detecting a particle located in the region of the surface of the substrate.
Abstract:
A metrology system comprises a radiation source, an optical element, first and second detectors, an integrated optical device comprising a multimode waveguide, and a processor. The radiation source generates radiation. The optical element directs radiation toward a target to generate scattered radiation from the target. The first detector receives a first portion of the scattered radiation and generates a first detection signal based on the received first portion. The multimode waveguide interferes a second portion of the scattered radiation using modes of the multimode waveguide. The second detector receives the interfered second portion and generates a second detection signal based on the received interfered second portion. The processor receives the first and second detection signals. The processor analyzes the received first portion, the received interfered second portion, and a propagation property of the multimode waveguide. The processor determines the property of the target based on the analysis.
Abstract:
An optical system for improving alignment measurement accuracy is discussed. The optical system includes first and second optical elements. The first optical element may be configured to change a first beam having a first polarization state into a second beam having a second polarization state. The second optical element may be configured to provide total internal reflection of the second beam and to change the second beam into a third beam having a third polarization state. The first, second, and third polarization states may be different from each other.