Abstract:
There is provided a conditioning system for a lithographic apparatus, said conditioning system being configured to condition one or more optical elements of the lithographic apparatus, wherein the conditioning system is configured to have a sub-atmospheric pressure at the one or more optical elements. Also provided are a lithographic apparatus comprising such a conditioning system, the use of such a conditioning system, a method of conditioning a system, as well as a lithographic method comprising a sub-atmospheric pressure cooling system
Abstract:
A lithographic apparatus is disclosed including a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, an outlet configured to remove a mixture of liquid and gas passing through a gap between a liquid confinement structure of the liquid supply system and the substrate, and an evacuation system configured to draw the mixture through the outlet, the evacuation system having a separator tank arranged to separate liquid from gas in the mixture and a separator tank pressure controller, connected to a non-liquid-filled region of the separator tank, configured to maintain a stable pressure within the non-liquid-filled region.
Abstract:
A radiation source includes a fuel supply, a collector, a debris mitigation system, and a temperature control system. The fuel supply device supplies fuel. The excitation device excites the fuel into a plasma. The collector collects radiation emitted by the plasma and directs the radiation to a beam exit. The debris mitigation system collects debris generated by the plasma and has a first component having a first conduit passing therethrough and a second component having a second conduit passing therethrough. The temperature control system increases or decreases temperatures of the first component and the second component by selectively heating or cooling a thermal transfer fluid circulating through the respective conduit. The temperature control system cools the first component to a first temperature that is below the melting point of the fuel and heats the second component to a second temperature that is above the melting point of the fuel.
Abstract:
A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and a heater.
Abstract:
A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and a heater.
Abstract:
An immersion lithographic apparatus is cleaned by use of a cleaning liquid consisting essentially of ultra-pure water and (a) a mixture of hydrogen peroxide and ozone, or (b) hydrogen peroxide at a concentration of up to 5%, or (c) ozone at a concentration of up to 50 ppm, or (d) oxygen at concentration of up to 10 ppm, or (e) any combination selected from (a)-(d).
Abstract:
A temperature conditioning system using conditioning liquid to condition a temperature of an object, the system including a conditioning conduit, a return conduit, a supply chamber, and a discharge chamber, wherein the temperature conditioning system is arranged to provide a static pressure difference between the supply chamber outlet and the discharge chamber inlet to create a flow through the conditioning conduit. A lithography apparatus and a method of temperature conditioning an object is also described.
Abstract:
A lithographic apparatus is disclosed including a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, an outlet configured to remove a mixture of liquid and gas passing through a gap between a liquid confinement structure of the liquid supply system and the substrate, and an evacuation system configured to draw the mixture through the outlet, the evacuation system having a separator tank arranged to separate liquid from gas in the mixture and a separator tank pressure controller, connected to a non-liquid-filled region of the separator tank, configured to maintain a stable pressure within the non-liquid-filled region.
Abstract:
A lithographic apparatus is disclosed including a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, an outlet configured to remove a mixture of liquid and gas passing through a gap between a liquid confinement structure of the liquid supply system and the substrate, and an evacuation system configured to draw the mixture through the outlet, the evacuation system having a separator tank arranged to separate liquid from gas in the mixture and a separator tank pressure controller, connected to a non-liquid-filled region of the separator tank, configured to maintain a stable pressure within the non-liquid-filled region.
Abstract:
A lithographic apparatus is described having a liquid supply system configured to at least partly fill a space between a projection system of the lithographic apparatus and a substrate with liquid, a barrier member arranged to substantially contain the liquid within the space, and a heater.