Abstract:
A radiation source comprising a fuel source configured to deliver fuel to a location from which the fuel emits EUV radiation. The radiation source further comprises an immobile fuel debris receiving surface provided with a plurality of grooves. The grooves have orientations which are arranged to direct the flow of liquid fuel under the influence of gravity in one or more desired directions.
Abstract:
A radiation source comprising a fuel source configured to deliver fuel to a location from which the fuel emits EUV radiation. The radiation source further comprises an immobile fuel debris receiving surface provided with a plurality of grooves. The grooves have orientations which are arranged to direct the flow of liquid fuel under the influence of gravity in one or more desired directions.
Abstract:
A radiation system comprises a fuel emitter configured to provide fuel to a plasma formation region, a laser arranged to provide a laser beam at the plasma formation region incident on the fuel to generate a radiation emitting plasma, and a reflective or transmissive device (30) arranged to receive radiation emitted by the plasma and to reflect or transmit at least some of the received radiation along a desired path, wherein the reflective or transmissive device comprises a body configured to reflect and/or transmit said at least some of the radiation, and selected secondary electron emission (SEE) material (34) arranged relative to the body such as to emit secondary electrons in response to the received radiation, thereby to clean material from a surface of the device.
Abstract:
A radiation source for a lithographic apparatus, in particular a laser-produced plasma source includes a fan unit surrounding but not obstructing the collected radiation beam that is operated to generate a flow in a buffer gas away from the optical axis. The fan unit can include a plurality of flat or curved blades generally parallel to the optical axis and driven to rotate about the optical axis.
Abstract:
A source-collector device is constructed and arranged to generate a radiation beam, The device includes a target unit constructed and arranged to present a target surface of plasma-forming material; a laser unit constructed and arranged to generate a beam of radiation directed onto the target surface so as to form a plasma from said plasma-forming material; a contaminant trap constructed and arranged to reduce propagation of particulate contaminants generated by the plasma; a radiation collector comprising a plurality of grazing-incidence reflectors arranged to collect radiation emitted by the plasma and form a beam therefrom; and a filter constructed and arranged to attenuate at least one wavelength range of the beam.
Abstract:
A fuel stream generator comprising a nozzle connected to a fuel reservoir, wherein the nozzle is provided with a gas inlet configured to provide a sheath of gas around fuel flowing along the nozzle is disclosed. Also disclosed are a method of generating fuel droplets and a lithography apparatus incorporating the fuel stream generator.
Abstract:
A source-collector device includes a target unit having a target surface of plasma-forming material and a laser unit to generate a beam of radiation directed onto the target surface to form a plasma from said plasma-forming material. A contaminant trap is provided to reduce propagation of particulate contaminants generated by the plasma. A radiation collector includes a one or more grazing-incidence reflectors arranged to collect radiation emitted by the plasma and form a beam therefrom, and a filter is configured to attenuate at least one wavelength range of the beam.
Abstract:
A radiation source suitable for providing radiation to a lithographic apparatus generates radiation from a plasma (12) generated from a fuel (31) within an enclosure comprising a gas. The plasma generates primary fuel debris collected as a fuel layer on a debris-receiving surface ((33a), (33b)). The debris-receiving surface is heated to a temperature to maintain the fuel layer as a liquid, and to provide a reduced or zero rate of formation gas bubbles within the liquid fuel layer in order to reduce contamination of optical surfaces (14) by secondary debris arising from gas bubble eruption from the liquid fuel layer. Additionally or alternatively, the radiation source may have a debris receiving surface positioned and/or oriented such that substantially all lines normal to the debris receiving surface do not intersect an optically active surface of the radiation source.
Abstract:
Designs are provided to reduce the possibility of contaminant particles with a large range of sizes, materials, travel speeds and angles of incidence reaching a particle-sensitive environment. According to an aspect of the disclosure, there is provided an object stage comprising first and second chambers, a first structure having a first surface, and a second structure. The second structure is configured to support an object in the second chamber, movable relative to the first structure. The second structure comprises a second surface opposing the first surface of the first structure thereby defining a gap between the first structure and the second structure that extends between the first chamber and the second chamber. The second structure further comprises a third surface within the first chamber. The object stage further comprises a trap disposed on at least a portion of the third surface, the trap comprising a plurality of baffles.
Abstract:
A radiation source comprising a fuel source configured to deliver fuel to a location from which the fuel emits EUV radiation. The radiation source further comprises an immobile fuel debris receiving surface provided with a plurality of grooves. The grooves have orientations which are arranged to direct the flow of liquid fuel under the influence of gravity in one or more desired directions.