Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
Abstract:
Disclosed is a metrology apparatus comprising an optical element configured to receive at or near a pupil plane of the metrology apparatus, at least first radiation comprising a first higher diffracted order and second radiation comprising a zeroth order resulting from illumination of a metrology target with radiation; and to direct said first radiation and second radiation together in a first direction. The metrology apparatus is further configured to form at least a first image of a first interference pattern, the first interference pattern resulting from interference of said first radiation and second radiation at an image plane.
Abstract:
Inspection apparatus (100) is used for measuring parameters of targets on a substrate. Coherent radiation follows an illumination path (solid rays) for illuminating target (T). A collection path (dashed rays) collects diffracted radiation from the target and delivers it to a lock-in image detector (112). A reference beam following a reference path (dotted rays). An acousto-optical modulator (108) shifts the optical frequency of the reference beam so that the intensity of radiation at the lock-in detector includes a time-varying component having a characteristic frequency corresponding to a difference between the frequencies of the diffracted radiation and the reference radiation. The lock-in image detector records two-dimensional image information representing both amplitude and phase of the time-varying component. A second reference beam with a different shift (110) follows a second reference path (dot-dash rays). Interference between the two reference beams can be used for intensity normalization.
Abstract:
A scatterometer for measuring a property of a target on a substrate includes a radiation source, a detector, and a processor. The radiation source produces a radiated spot on the target. The scatterometer adjusts a position of the radiated spot along a first direction across the target and along a second direction that is at an angle with respect to the first direction. The detector receives radiation scattered by the target. The received radiation is associated with positions of the radiated spot on the target along at least the first direction. The detector generates measurement signals based on the positions of the radiated spot on the target. The processor outputs, based on the measurement signals, a single value that is representative of the property of the target. The processor also combines the measurement signals to output a combined signal and derives, based on the combined signal, the single value.
Abstract:
A scatterometer for measuring a property of a target on a substrate includes a radiation source, a detector, and a processor. The radiation source produces a radiated spot on the target. The scatterometer adjusts a position of the radiated spot along a first direction across the target and along a second direction that is at an angle with respect to the first direction. The detector receives radiation scattered by the target. The received radiation is associated with positions of the radiated spot on the target along at least the first direction. The detector generates measurement signals based on the positions of the radiated spot on the target. The processor outputs, based on the measurement signals, a single value that is representative of the property of the target. The processor also combines the measurement signals to output a combined signal and derives, based on the combined signal, the single value.
Abstract:
Disclosed is a metrology apparatus comprising an optical element configured to receive at or near a pupil plane of the metrology apparatus, at least first radiation comprising a first higher diffracted order and second radiation comprising a zeroth order resulting from illumination of a metrology target with radiation; and to direct said first radiation and second radiation together in a first direction. The metrology apparatus is further configured to form at least a first image of a first interference pattern, the first interference pattern resulting from interference of said first radiation and second radiation at an image plane.
Abstract:
A scatterometer for measuring a property of a target on a substrate includes a radiation source, a detector, and a processor. The radiation source produces a radiated spot on the target. The scatterometer adjusts a position of the radiated spot along a first direction across the target and along a second direction that is at an angle with respect to the first direction. The detector receives radiation scattered by the target. The received radiation is associated with positions of the radiated spot on the target along at least the first direction. The detector generates measurement signals based on the positions of the radiated spot on the target. The processor outputs, based on the measurement signals, a single value that is representative of the property of the target. The processor also combines the measurement signals to output a combined signal and derives, based on the combined signal, the single value.
Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.
Abstract:
An apparatus and method to determine a property of a substrate by measuring, in the pupil plane of a high numerical aperture lens, an angle-resolved spectrum as a result of radiation being reflected off the substrate. The property may be angle and wavelength dependent and may include the intensity of TM- and TE-polarized radiation and their relative phase difference.