Abstract:
A lithographic reticle is illuminated to transfer a pattern to a substrate, inducing distortions due to heating. The distortions are calculated using reference marks in a peripheral portion of the reticle and measuring changes in their relative positions over time. A plurality of cells are defined for which a system of equations can be solved to calculate a dilation of each cell. In an embodiment, each equation relates positions of pairs of marks to dilations of the cells along a fine (s, s1, s2) connecting each pair. Local positional deviations can be calculated for a position by combining calculated dilations for cells between at least one measured peripheral mark and the position. Corrections can be applied in accordance with the result of the calculation. Energy may be applied to the patterning device (for example by thermal input or mechanical actuators) to modify a distribution of the local positional deviations.
Abstract:
A lithographic apparatus includes at least one image alignment sensor for receiving radiation projected from an alignment mark on a reticle. Processor processes signals from the sensor(s) to resolve spatial information in the projected alignment mark to establish a reference for measuring positional relationships between a substrate support and the patterning location. Examples of the sensor include line arrays of photodetectors. A single array can resolve spatial information in a plane of the sensor (X, Y direction) and in a perpendicular (Z) direction. At least a final step in establishing the reference position is performed while holding the substrate support stationary. Errors and delays induced by mechanical scanning of prior art sensors are avoided. Alternatively (not illustrated) the sensor is moved for mechanical scanning relative to the substrate support, independently of the main positioning systems.
Abstract:
A lithographic reticle is illuminated to transfer a pattern to a substrate, inducing distortions due to heating. The distortions are calculated using reference marks in a peripheral portion of the reticle and measuring changes in their relative positions over time. A plurality of cells are defined for which a system of equations can be solved to calculate a dilation of each cell. In an embodiment, each equation relates positions of pairs of marks to dilations of the cells along a line (s, s1, s2) connecting each pair. Local positional deviations can be calculated for a position by combining calculated dilations for cells between at least one measured peripheral mark and the position. Corrections can be applied in accordance with the result of the calculation. Energy may be applied to the patterning device (for example by thermal input or mechanical actuators) to modify a distribution of the local positional deviations.
Abstract:
A lithographic reticle is illuminated to transfer a pattern to a substrate, inducing distortions due to heating. The distortions are calculated using reference marks in a peripheral portion of the reticle and measuring changes in their relative positions over time. A plurality of cells are defined for which a system of equations can be solved to calculate a dilation of each cell. In an embodiment, each equation relates positions of pairs of marks to dilations of the cells along a line (s, s1, s2) connecting each pair. Local positional deviations can be calculated for a position by combining calculated dilations for cells between at least one measured peripheral mark and the position. Corrections can be applied in accordance with the result of the calculation. Energy may be applied to the patterning device (for example by thermal input or mechanical actuators) to modify a distribution of the local positional deviations.