Abstract:
A system for adjusting content display orientation on a screen is disclosed. The system may include a processor that may detect both eyes and a body part of a user that is proximal to one or more of the user's eyes. The system may then determine an eye gaze plane based on the positions of the first and second eyes of the user. The eye gaze plane may be determined by identifying a first line of sight extending from the first eye and a second line of sight extending from the second eye. Additionally, the eye gaze plane may bisect a center of the first eye and a center of the second eye of the user. Once the eye gaze plane is determined, the system may adjust the orientation of content displayed on a display device based on the eye gaze plane and on the position of the body part.
Abstract:
A system for providing awareness of an interactive surface is disclosed. The system may include a processor that is communicatively linked to an interactive surface. The processor may determine a position and a velocity of an object that is within range of the interactive surface based on one or more of media content, vibrations, air movement, sounds and, global positioning data associated with the object. Additionally, the processor may determine if the object has a trajectory that would cause the object to collide with the interactive surface based on the information associated with the object. If the processor determines that the object has a trajectory that would cause the object to collide with the interactive surface, the processor can generate a notification.
Abstract:
A system for adjusting content display orientation on a screen is disclosed. The system may include a processor that may detect both eyes and a body part of a user that is proximal to one or more of the user's eyes. The system may then determine an eye gaze plane based on the positions of the first and second eyes of the user. The eye gaze plane may be determined by identifying a first line of sight extending from the first eye and a second line of sight extending from the second eye. Additionally, the eye gaze plane may bisect a center of the first eye and a center of the second eye of the user. Once the eye gaze plane is determined, the system may adjust the orientation of content displayed on a display device based on the eye gaze plane and on the position of the body part.
Abstract:
A system for adjusting content display orientation on a screen is disclosed. The system may include a processor that may detect both eyes and a body part of a user that is proximal to one or more of the user's eyes. The system may then determine an eye gaze plane based on the positions of the first and second eyes of the user. The eye gaze plane may be determined by identifying a first line of sight extending from the first eye and a second line of sight extending from the second eye. Additionally, the eye gaze plane may bisect a center of the first eye and a center of the second eye of the user. Once the eye gaze plane is determined, the system may adjust the orientation of content displayed on a display device based on the eye gaze plane and on the position of the body part.
Abstract:
A system for providing awareness of an interactive surface is disclosed. The system may include a processor that is communicatively linked to an interactive surface. The processor may determine a position and a velocity of an object that is within range of the interactive surface based on one or more of media content, vibrations, air movement, sounds and, global positioning data associated with the object. Additionally, the processor may determine if the object has a trajectory that would cause the object to collide with the interactive surface based on the information associated with the object. If the processor determines that the object has a trajectory that would cause the object to collide with the interactive surface, the processor can generate a notification.
Abstract:
A system for adjusting content display orientation on a screen is disclosed. The system may include a processor that may detect both eyes and a body part of a user that is proximal to one or more of the user's eyes. The system may then determine an eye gaze plane based on the positions of the first and second eyes of the user. The eye gaze plane may be determined by identifying a first line of sight extending from the first eye and a second line of sight extending from the second eye. Additionally, the eye gaze plane may bisect a center of the first eye and a center of the second eye of the user. Once the eye gaze plane is determined, the system may adjust the orientation of content displayed on a display device based on the eye gaze plane and on the position of the body part.
Abstract:
A mobile communication device includes executable instructions for carrying out a method including setting a time duration for an application, receiving a first input, receiving a second input, determining the elapsed time between the first and second inputs, modifying the time duration based upon the elapsed time, and dimming a screen of the mobile device when the elapsed time exceeds the time duration.
Abstract:
A method includes receiving video content via an access network of a video distribution network at a set-top box device associated with a subscriber. One or more communication devices are associated with the subscriber. The method includes sending the video content to a display device coupled to the set-top box device. The method includes receiving a notification of a message directed to a particular communication device of the one or more communication devices at the set-top box via the access network. The method includes selecting a message indicator based on configuration settings associated with the subscriber. The method also includes sending the message indicator to the display device to overlay a portion of the video content.
Abstract:
A system for providing layered security is disclosed. In particular, the system may include determining a state of a first device of a device ecosystem and a state of a second device of the device ecosystem. Based on the states of the first and second devices, the system may include calculating a confidence score for the device ecosystem. If the confidence score satisfies a threshold score for enabling access to a selected system, the system may include transmitting an access code to the device ecosystem. Based on the access code, the system may enable the device ecosystem to access the selected system. If, however, the confidence score does not satisfy the threshold score, the system may include requiring the device ecosystem to provide additional authentication information in order to access the selected system.
Abstract:
A system for providing awareness of an interactive surface is disclosed. The system may include a processor that is communicatively linked to an interactive surface. The processor may determine a position and a velocity of an object that is within range of the interactive surface based on one or more of media content, vibrations, air movement, sounds and, global positioning data associated with the object. Additionally, the processor may determine if the object has a trajectory that would cause the object to collide with the interactive surface based on the information associated with the object. If the processor determines that the object has a trajectory that would cause the object to collide with the interactive surface, the processor can generate a notification.