摘要:
Methods and systems provide for anchoring implantable medical device inside a bodily vessel. An anchoring structure can include a stent-like structure to which the IMD is attached. The stent-like structure is positioned at a desired location in the bodily vessel. The stent-like structure can be repositioned based on a measurement from the IMD. The IMD can include outwardly extending fins over which tissue can fibrose to affix the IMD to a wall of the bodily vessel. The stent-like structure can be made of a bio-absorbable material. The IMD can be attached to a stent-like structure by leads, by being lodged in a recessed diaphragm, by being embedded in mesh of the stent-like structure, or other methods. The stent-like structure can be balloon deployable to allow for controlled positioning and anchoring. The anchoring structure can include a vena cava filter.
摘要:
An implantable cardiac device is configured and programmed to collect blood pressure waveforms from one or more implantable pressure sensors. Techniques are described for extracting features and reducing noise in the pressure waveforms by averaging waveforms which are aligned with a detected cardiac cycle. Noise can also be reduced by gating and calibration functions performed in accordance with other sensor data.
摘要:
A system and method for providing digital data communications over a wireless intra-body network is presented. A physical protocol layer is logically defined with an identifier uniquely assigned to a plurality of implantable devices in an intra-body network. Functions are specified within the physical protocol layer to transact data exchange over a wireless interface. A slave implantable device is activated in response to an activation signal transmitted through the wireless interface by a master implantable device. A wireless communications link is established between the slave implantable device and the master implantable device upon matching of the identifier assigned to the slave implantable device. Data is communicated intra-bodily over the communications link.
摘要:
An implantable medical device includes an acoustic transducer for intra-body communication with another medical device via an acoustic couple. The acoustic transducer includes one or more piezoelectric transducers. In one embodiment, an implantable medical device housing contains a cardiac rhythm management (CRM) device and an acoustic communication circuit. The acoustic transducer is electrically connected to the acoustic communication circuit to function as an acoustic coupler and physically fastened to a wall of the implantable housing, directly or via a supporting structure.
摘要:
One embodiment of the present invention relates to a system for deriving physiologic measurement values that are relative to ambient conditions. In one embodiment, the system comprises an implantable medical device (“IMD”), an external computing device, and a backend computing system. The IMD determines an absolute physiologic parameter value within a patient's body, and communicates the absolute physiologic parameter value outside the patient's body, for example, to the external computing device. Further, the external computing device receives the absolute physiologic parameter from the IMD and communicates it to the backend computing system. The backend computing system receives the absolute physiologic parameter value and obtains an ambient condition value outside the body that can affect the absolute physiologic parameter value. The backend computing system then calculates a relative physiologic parameter value from the ambient condition value and the absolute physiologic parameter value, and in some embodiments, stores the relative physiologic parameter value in a storage location, such as a memory or database.
摘要:
An apparatus and method is presented for an implanted sound sensor wirelessly communicating with an implantable medical device, or with an external monitoring device. The second sensor may be located inside a blood vessel anchored by an expandable stent like device, and may be drug coated. The sound sensor may be a solid-state microphone having a unidirectional characteristic and may be aimed at a selected portion of the heart, lung, or other location. There may be a network of sound sensors forming a local area network with the implantable medical device. The information from the sound sensor may be analyzed, filtered, transformed, compared to a standard and stored in the implantable device, or it may be passed on to an external location. The results of the analysis may be use to initiate a closed-loop treatment by the implantable medical device, such as cardiac pacing or defibrillation.
摘要:
One embodiment of the present invention relates to a system for deriving physiologic measurement values that are relative to ambient conditions. In one embodiment, the system comprises an implantable medical device (“IMD”) and an external monitor. The IMD is adapted to determine an absolute physiologic parameter value within a patient's body, and communicate the absolute physiologic parameter value outside the patient's body, for example, to the external monitor. Further, the external monitor is adapted to receive the absolute physiologic parameter from the IMD and obtain an ambient condition value outside the body that can affect the absolute physiologic parameter value. The external monitor then calculates a relative physiologic parameter value from the ambient condition value and the absolute physiologic parameter value.
摘要:
One embodiment of the present invention relates to a system for deriving physiologic measurement values that are relative to ambient conditions. In one embodiment, the system comprises an implantable medical device (“IMD”) and an external computing device. The IMD is operable to determine an absolute physiologic parameter value within a patient's body, and communicate the absolute physiologic parameter value outside the patient's body, for example, to the external computing device. Further, the external computing device is operable to receive the absolute physiologic parameter from the IMD and obtain an ambient condition value outside the body that can affect the absolute physiologic parameter value. The external computing device then calculates a relative physiologic parameter value from the ambient condition value and the absolute physiologic parameter value.
摘要:
An implantable medical device (IMD) is adapted for detecting acoustic chest sounds. The IMD includes a pulse generator having a compartment, the compartment defining an isolated cavity bounded by a back wall. A diaphragm is disposed over and encloses the cavity. An acoustic sensor adapted to sense chest sounds and generate a signal is disposed between the diaphragm and the back wall. The IMD also includes a control circuit disposed within the pulse generator. The circuit is operatively coupled to the acoustic sensor and is adapted to receive the signal.
摘要:
One embodiment of the present invention relates to a system for deriving physiologic measurement values that are relative to ambient conditions. In one embodiment, the system comprises an implantable medical device (“IMD”), which includes a main body; and a remote sensor system operable to measure an absolute physiologic parameter value within a patient's body. The system further comprises an external device, which can be operable to obtain an ambient condition value outside the patient's body that can affect the absolute physiologic parameter value, and communicate the ambient condition value to the remote sensor system. In accordance with one embodiment, the remote sensor system then can be further operable to receive the ambient condition value and calculate a relative physiologic parameter value from the ambient condition value and the absolute physiologic parameter value.