摘要:
Described is a system and method for transporting interference-related control data and other information between nodes in a wireless network, using a control channel that is distinct from a content channel used to transport content. The control channel may be a different channel in the same unlicensed band as the content channel, a channel in a different unlicensed band, or a channel in a licensed band, and thereby not subject to the same interference-related problems that the unlicensed content channel may experience. As a result, management information for adjusting the content channel's communication parameters may still be communicated between the nodes, whereby mitigation actions may occur. For example, the content channel may be changed to another frequency, compression may be implemented or varied, and/or the data transfer rate may be varied. The control data can also be used to change the control channel's communication parameters.
摘要:
Described is a determination of whether interference in a wireless network has achieved a threshold level that adversely impacts communication bandwidth. If so, action is taken to mitigate the effects of the interference and thereby improve the bandwidth. The action that is taken may be in the form of at least one mitigation solution, including mitigating by packet fragmentation, mitigating by changing the wireless network's current operating frequency, mitigating by changing a power level, mitigating by transmit dodging, and/or mitigating by pre-selecting at least one transmission criterion based on an observed pattern. A framework is provided to coordinate mitigation of interference-related problems, and includes an interferer decision mechanism that receives RF interference related-data and evaluates the interference data against a threshold. Mitigation is employed when the threshold is achieved on the current operating frequency.
摘要:
Described is an architecture comprising a flexible and extensible framework embodied in a robust coexistence service that couples sensed RF spectrum (interference) data to modules that process the data into dynamic feedback information used to mitigate network communication problems caused by the interference. Via a driver, spectrum sensor hardware is connected to the framework running on a computing device, where the condition and quality of various wireless networking channels are assessed by external modules plugged into the framework. Modules comprise include a classifier component that examines the sensed-data and classifies it, and an application program that processes the classified data, possibly for mitigation. Mitigation-related information is fed to a feedback mechanism to adjust network parameters to avoid the sensed interference. The robust coexistence service also distributes control data corresponding to the mitigation information to other remote computing devices in the wireless network for use in mitigating their interference problems.
摘要:
Described is a protocol by which wireless network communication devices comprising peer nodes (such as a computer system and an access point) cooperatively exchange information about RF interference detected in the network. The protocol administers the exchange of formatted control data corresponding to the detected interference among computing nodes running a service capable of processing the control data. A peer table is used to maintain locally-obtained and remotely-obtained control data. Records in the peer table are arranged with different levels of granularity with respect to interference and networking information. The interference information collected through the cooperative protocol may then be used by peer devices in the network to adapt to mitigate interference-related problems. The protocol also provides for discovery of peer node capabilities, including a negotiable transport for the control data that may be different from the main data channel transport.
摘要:
A mechanism is provided to extend the range of wireless devices beyond the range limit that results from timing restrictions imposed by the IEEE 802.11 standard. The mechanism, which operates at the upper level of the 802.11 MAC, determines whether the wireless devices are far apart or not far apart. When the wireless devices are determined to be far apart, the standard retransmission protocol at the lower level of the 802.11 MAC is disabled and a custom ACK packet is utilized. Delivery of a transmitted packet is confirmed if the custom ACK packet is received within a maximum delay period that takes into account the longer propagation delay between wireless devices that are far apart.
摘要:
Described is a determination of whether interference in a wireless network has achieved a threshold level that adversely impacts communication bandwidth. If so, action is taken to mitigate the effects of the interference and thereby improve the bandwidth. The action that is taken may be in the form of at least one mitigation solution, including mitigating by packet fragmentation, mitigating by changing the wireless network's current operating frequency, mitigating by changing a power level, mitigating by transmit dodging, and/or mitigating by pre-selecting at least one transmission criterion based on an observed pattern. A framework is provided to coordinate mitigation of interference-related problems, and includes an interferer decision mechanism that receives RF interference related-data and evaluates the interference data against a threshold. Mitigation is employed when the threshold is achieved on the current operating frequency.
摘要:
Described is a system and method for transporting interference-related control data and other information between nodes in a wireless network, using a control channel that is distinct from a content channel used to transport content. The control channel may be a different channel in the same unlicensed band as the content channel, a channel in a different unlicensed band, or a channel in a licensed band, and thereby not subject to the same interference-related problems that the unlicensed content channel may experience. As a result, management information for adjusting the content channel's communication parameters may still be communicated between the nodes, whereby mitigation actions may occur. For example, the content channel may be changed to another frequency, compression may be implemented or varied, and/or the data transfer rate may be varied. The control data can also be used to change the control channel's communication parameters.
摘要:
A user device within a communications architecture, the user device comprising: an object management entity configured to determine at least one object for a shared scene, the object associated with at least one changeable attribute; the object management entity further configured to determine a change in at least one of the at least one changeable attribute associated with the object; a message entity configured to generate for the at least one object an object attribute update message; a message delivery entity configured to control the output of the object attribute update message such that for a determined period the number of messages output is less than a send path rate number.
摘要:
A wireless mesh network enables multiple devices near each other to transmit simultaneously, thus allowing increased network bandwidth. Prior to transmitting, a device may determine various parameters of the wireless medium on which it desires to transmit. For example, the device may determine whether the intended recipient device is close enough, and verify that any other transmitting and receiving devices are far enough away. If these or any other suitable criteria are met, the device can transmit simultaneously with other devices in the vicinity.
摘要:
A software based wireless infrastructure system is provided. The system has a driver that communicates with the network stack and a network interface card (NIC), a station server in communication with the station driver and an 802.1X supplicant or an 802.1X authenticator. Each NIC provides station and/or access point functionality support. The driver drops packets that have been received if the packet has not been authenticated and associated. Packets that have been fragmented or encrypted are unfragmented and decrypted. An association manager is used in conjunction with a configuration table manager to associate stations and access points via management packets. A manager receives 802.1X data packets from the packet processor and sends them up to a station server that communicates with user mode applications and an 802.1X supplicant or an 802.1X authenticator that are used to authenticate and deauthenticate stations and access points. APIs are provided to enable communication between the components.