摘要:
A method for continuously monitoring the working condition of a heat recovery steam generator (“HRSG”) using infrared thermography, comprising the steps of identifying target locations inside the HRSG, positioning one or more infrared cameras to continuously monitor and record the temperature at each target location, generating continuous thermographic images corresponding to selected components and locations at each target locations, comparing the continuous thermographic images to corresponding, stored base line images and generating a set of comparative data reports in real time for each target location in order to predict the life span or potential failure of HRSG components.
摘要:
A method for continuously monitoring the working condition of a heat recovery steam generator (“HRSG”) using infrared thermography, comprising the steps of identifying target locations inside the HRSG, positioning one or more infrared cameras to continuously monitor and record the temperature at each target location, generating continuous thermographic images corresponding to selected components and locations at each target locations, comparing the continuous thermographic images to corresponding, stored base line images and generating a set of comparative data reports in real time for each target location in order to predict the life span or potential failure of HRSG components.
摘要:
A method of forming a failure estimate for one or more components of a heat recovery steam generator (HRSG) includes forming from failure models and at least one of fired hours and fired starts, factored hours and factored starts. The factored hours and/or starts are applied to failure equations for the one or more components to form the failure estimate.
摘要:
A method of forming a failure estimate for one or more components of a heat recovery steam generator (HRSG) includes forming from failure models and at least one of fired hours and fired starts, factored hours and factored starts. The factored hours and/or starts are applied to failure equations for the one or more components to form the failure estimate.
摘要:
A power plant is provided and includes a gas turbine engine to generate power, a heat recovery steam generator (HRSG) to produce steam from high energy fluids produced from the generation of power in the gas turbine engine, a steam turbine engine to generate additional power from the steam produced in the HRSG and a thermal load reduction system to reduce thermal loading of components of the HRSG and/or the steam turbine engine during at least startup and/or part load operations, which includes an eductor by which a mixture of compressor discharge air and entrained ambient air is injectable into the HRSG and/or an attemperator to cool superheated steam to be transmitted to the steam turbine engine and a detector disposed within the HRSG to facilitate identification of hot spots therein.
摘要:
A power plant is provided and includes a gas turbine engine to generate power, a heat recovery steam generator (HRSG) to produce steam from high energy fluids produced from the generation of power in the gas turbine engine, a steam turbine engine to generate additional power from the steam produced in the HRSG and a thermal load reduction system to reduce thermal loading of components of the HRSG and/or the steam turbine engine during at least startup and/or part load operations, which includes an eductor by which a mixture of compressor discharge air and entrained ambient air is injectable into the HRSG and/or an attemperator to cool superheated steam to be transmitted to the steam turbine engine and a detector disposed within the HRSG to facilitate identification of hot spots therein.
摘要:
A combined cycle power plant is provided and includes a gas turbine engine to generate power, a heat recovery steam generator (HRSG) to produce steam from high energy fluids produced from the generation of power in the gas turbine engine, a steam turbine engine to generate additional power from the steam produced in the HRSG and a thermal load reduction system to reduce thermal loading of components of the HRSG and/or the steam turbine engine during at least startup and/or part load operations, which includes an eductor by which a mixture of compressor discharge air and entrained ambient air is injectable into the HRSG and/or an attemperator to cool superheated steam to be transmitted to the steam turbine engine.
摘要:
Disclosed is a solution to automate a seal oil float trap by-pass for a hydrogen cooled generator. An automated by-pass system is coupled to an existing manual by-pass system for a float trap for a hydrogen cooled generator. The automated by-pass system includes at least one solenoid valve and a controller that controls opening and closing of the solenoid valve. The automated by-pass system can also include manual valves, orifices and limit switches. The controller activates the solenoid valve to allow the seal oil to drain. The controller can also provide a notification alarm that the hydrogen cooled generator is being purged.
摘要:
A combined cycle power plant is provided and includes a gas turbine engine to generate power, a heat recovery steam generator (HRSG) to produce steam from high energy fluids produced from the generation of power in the gas turbine engine, a steam turbine engine to generate additional power from the steam produced in the HRSG and a thermal load reduction system to reduce thermal loading of components of the HRSG and/or the steam turbine engine during at least startup and/or part load operations, which includes an eductor by which a mixture of compressor discharge air and entrained ambient air is injectable into the HRSG and/or an attemperator to cool superheated steam to be transmitted to the steam turbine engine.
摘要:
A waste heat utilization system and associated methods for preheating fuel for a turbine engine component. The turbine engine component includes at least one heat generating source. The system includes structure for applying heat from the at least one heat generating source to relatively cold fuel for the turbine engine component to preheat the fuel prior to ignition.