摘要:
A method configures a plurality of circuit elements for execution of an application in a first configuration. The method monitors the execution of the application on the plurality of circuit elements to produce monitoring information, using a computerized device, and stores the monitoring information in a storage structure. The method selectively communicates the monitoring information to an external element separate from the computerized device. The external element transforms the first configuration into a second configuration based on the monitoring information. The computerized device receives the second configuration from the external element and reconfigures the plurality of elements into the second configuration.
摘要:
A method configures a plurality of circuit elements for execution of an application in a first configuration. The method monitors the execution of the application on the plurality of circuit elements to produce monitoring information, using a computerized device, and stores the monitoring information in a storage structure. The method selectively communicates the monitoring information to an external element separate from the computerized device. The external element transforms the first configuration into a second configuration based on the monitoring information. The computerized device receives the second configuration from the external element and reconfigures the plurality of elements into the second configuration.
摘要:
An integrated circuit (IC) including a warranty and enforcement system, and a related design structure and HDL design structure are disclosed. In one embodiment, an IC includes a parameter obtainer for obtaining a value of a parameter of the IC; a warranty data storage system for storing warranty limit data regarding the IC; a comparator for determining whether a warranty limit has been exceeded by comparing the value of the parameter to a corresponding warranty limit; and an action taker for taking a prescribed action in response to the warranty limit being exceeded.
摘要:
An integrated circuit (IC) including a warranty and enforcement system and a method are disclosed. In one embodiment, an IC includes a parameter obtainer for obtaining a value of a parameter of the IC; a warranty data storage system for storing warranty limit data regarding the IC; a comparator for determining whether a warranty limit has been exceeded by comparing the value of the parameter to a corresponding warranty limit; and an action taker for taking a prescribed action in response to the warranty limit being exceeded.
摘要:
An integrated circuit (IC) including a warranty and enforcement system, and a related design structure and HDL design structure are disclosed. In one embodiment, an IC includes a parameter obtainer for obtaining a value of a parameter of the IC; a warranty data storage system for storing warranty limit data regarding the IC; a comparator for determining whether a warranty limit has been exceeded by comparing the value of the parameter to a corresponding warranty limit; and an action taker for taking a prescribed action in response to the warranty limit being exceeded.
摘要:
A MEMS component is monitored to determine its status. Sensors are deployed to sense the MEMS component and produce detection signals that are analyzed to determine the MEMS component state. An indicator device alerts a user of the status, particularly if the MEMS component has failed. Additionally, the MEMS component monitoring system may be practiced as a design structure encoded on computer readable storage media as part of a circuit design system.
摘要:
A MEMS component is monitored to determine its status. Sensors are deployed to sense the MEMS component and produce detection signals that are analyzed to determine the MEMS component state. An indicator device alerts a user of the status, particularly if the MEMS component has failed. Additionally, the MEMS component monitoring system may be practiced as a design structure encoded on computer readable storage media as part of a circuit design system.
摘要:
Disclosed are embodiments of on-chip identification circuitry. In one embodiment, pairs of conductors (e.g., metal pads, vias, lines) are formed within one or more metallization layers. The distance between the conductors in each pair is predetermined so that, given known across chip line variations, there is a random chance (i.e., an approximately 50/50 chance) of a short. In another embodiment different masks form first conductors (e.g., metal lines separated by varying distances and having different widths) and second conductors (e.g., metal vias separated by varying distances and having equal widths). The first and second conductors alternate across the chip. Due to the different separation distances and widths of the first conductors, the different separation distances of the second conductors and, random mask alignment variations, each first conductor can short to up to two second conductors. In each embodiment the resulting pattern of shorts and opens, can be used as an on-chip identifier or private key.
摘要:
Disclosed is a design structure for an on-chip identification circuitry. In one embodiment, pairs of conductors (e.g., metal pads, vias, lines) are formed within one or more metallization layers. The distance between the conductors in each pair is predetermined so that, given known across chip line variations, there is a random chance (i.e., an approximately 50/50 chance) of a short. In another embodiment different masks form first conductors (e.g., metal lines separated by varying distances and having different widths) and second conductors (e.g., metal vias separated by varying distances and having equal widths). The first and second conductors alternate across the chip. Due to the different separation distances and widths of the first conductors, the different separation distances of the second conductors and, random mask alignment variations, each first conductor can short to up to two second conductors. In each embodiment the resulting pattern of shorts and opens, can be used as an on-chip identifier or private key.
摘要:
An integrated circuit (IC) architecture includes a library of intellectual property (IP) cores configured to provide a plurality of individual circuit functions. The IP cores arranged in a manner compatible with a customized, functional selection of individual ones of the IP cores, wherein individually selected cores are accessible through a communication structure included within the library.