摘要:
An optical measurement system for evaluating a sample has a motor-driven rotating mechanism coupled to an azimuthally rotatable measurement head, allowing the optics to rotate with respect to the sample. A polarimetric scatterometer, having optics directing a polarized illumination beam at non-normal incidence onto a periodic structure on a sample, can measure optical properties of the periodic structure. An E-O modulator in the illumination path can modulate the polarization. The head optics collect light reflected from the periodic structure and feed that light to a spectrometer for measurement. A beamsplitter in the collection path can ensure both S and P polarization from the sample are separately measured. The measurement head can be mounted for rotation of the plane of incidence to different azimuthal directions relative to the periodic structures. The instrument can be integrated within a wafer process tool in which wafers may be provided at arbitrary orientation.
摘要:
An optical measurement system for evaluating a sample has a motor-driven rotating mechanism coupled to an azimuthally rotatable measurement head, allowing the optics to rotate with respect to the sample. A polarimetric scatterometer, having optics directing a polarized illumination beam at non-normal incidence onto a periodic structure on a sample, can measure optical properties of the periodic structure. An E-O modulator in the illumination path can modulate the polarization. The head optics collect light reflected from the periodic structure and feed that light to a spectrometer for measurement. A beamsplitter in the collection path can ensure both S and P polarization from the sample are separately measured. The measurement head can be mounted for rotation of the plane of incidence to different azimuthal directions relative to the periodic structures. The instrument can be integrated within a wafer process tool in which wafers may be provided at arbitrary orientation.
摘要:
Alignment accuracy between two or more patterned layers is measured using a metrology target comprising substantially overlapping diffraction gratings formed in a test area of the layers being tested. An optical instrument illuminates all or part of the target area and measures the optical response. The instrument can measure transmission, reflectance, and/or ellipsometric parameters as a function of wavelength, polar angle of incidence, azimuthal angle of incidence, and/or polarization of the illumination and detected light. Overlay error or offset between those layers containing the test gratings is determined by a processor programmed to calculate an optical response for a set of parameters that include overlay error, using a model that accounts for diffraction by the gratings and interaction of the gratings with each others' diffracted field. The model parameters might also take account of manufactured asymmetries. The calculation may involve interpolation of pre-computed entries from a database accessible to the processor. The calculated and measured responses are iteratively compared and the model parameters changed to minimize the difference.
摘要:
A calibration method suitable for highly precise and highly accurate surface metrology measurements is described. In preferred embodiments, an optical inspection tool including a movable optics system is characterized in terms of position and wavelength dependent quantities over a range of motion. Once the position-dependant quantities are determined at various wavelengths and positions, they are stored and used to interpret data from test wafers having an unknown metrology. Free of position-dependent variations and other information pertaining to the measurement system, the accuracy of the resulting wafer measurement more closely matches the precision of the tool than existing techniques. In particular embodiments, a portion of the characterization of the optical system is accomplished by using tilted black glass to provide a non-reflective reference.
摘要:
A calibration method suitable for highly precise and highly accurate surface metrology measurements is described. In preferred embodiments, an optical inspection tool including a movable optics system is characterized in terms of position and wavelength dependent quantities over a range of motion. Once the position-dependant quantities are determined at various wavelengths and positions, they are stored and used to interpret data from test wafers having an unknown metrology. Free of position-dependent variations and other information pertaining to the measurement system, the accuracy of the resulting wafer measurement more closely matches the precision of the tool than existing techniques. In particular embodiments, a portion of the characterization of the optical system is accomplished by using tilted black glass to provide a non-reflective reference.
摘要:
The invention is a method and apparatus for determining characteristics of a sample. The system and method provide for detecting a monitor beam reflected off a mirror, where the monitor beam corresponds to the intensity of light incident upon the sample. The system and method also provide for detecting a measurement beam, where the measurement beam has been reflected off the sample being characterized. Both the monitor beam and the measurement beam are transmitted through the same transmission path, and detected by the same detector. Thus, potential sources of variations between the monitor beam and the measurement beam which are not due to the characteristics of the sample are minimized. Reflectivity information for the sample can be determined by comparing data corresponding to the measurement beam relative to data corresponding the monitor beam.
摘要:
The invention is a method and apparatus for determining characteristics of a sample. The system and method provide for detecting a monitor beam reflected off a mirror, where the monitor beam corresponds to the intensity of light incident upon the sample. The system and method also provide for detecting a measurement beam, where the measurement beam has been reflected off the sample being characterized. Both the monitor beam and the measurement beam are transmitted through the same transmission path, and detected by the same detector. Thus, potential sources of variations between the monitor beam and the measurement beam which are not due to the characteristics of the sample are minimized. Reflectivity information for the sample can be determined by comparing data corresponding to the measurement beam relative to data corresponding the monitor beam.
摘要:
Disclosed is a method, apparatus, and program product for routing an electronic design using sidewall image transfer that is correct by construction. The layout is routed by construction to allow successful manufacturing with sidewall image transfer, since the router will not allow a routing configuration in the layout that cannot be successfully manufactured with a two-mask sidewall image transfer. A layout is produced that can be manufactured by a two-mask sidewall image transfer method. In one approach, interconnections can be in arbitrary directions. In another approach, interconnections follow grid lines in x and y-directions.
摘要:
An apparatus and method for modifying a mask data set includes calculating a derivative of a figure-of-merit, indicative of a data set defined by a plurality of polygon edges and then segmenting polygon edges in response to said step of calculating.
摘要:
An apparatus and method for improving image quality in a photolithographic process includes calculating a figure-of-demerit for a photolithographic mask function and then adjusting said photolithographic mask function to reduce the figure of demerit.