摘要:
Improved sea urchin feeds are provided which are very efficiently utilized by sea urchins and significantly increase gonadal development. The feeds are semi-moist, stable, extruded solid pellets or bodies which sink in sea water and have protein and carbohydrate fractions as well as a moisture content of from about 12-40% by weight. The feed bodies have an as manufactured water activity of up to about 0.8, are storable at ambient temperature for a period of at least two months, and are self-sustaining in sea water for a period of at least about 24 hours. Preferred feeds include kelp, fish oil and humectant.
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular sections (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular section (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular sections (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular sections (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular sections (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular sections (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
High-capacity extrusion die assemblies (20, 90, 130, 140, 180, 252) each having a tubular sections (44, 146, 162, 268) and an elongated, axially rotatable, helically flighted screw section (56, 56a, 152, 168, 276, 278) which cooperatively define frustoconical, outwardly diverging material flow paths (75, 160, 291) at constant or differing divergence angles of from about 1-11°. The use of diverging tubular sections (44, 146, 162, 268) and screw sections (56, 56a, 152, 168, 276, 278) permits the use of larger die plates (76, 118, 292) with an increased number of die openings (80, 124, 296). This allows significant increases in extrusion production rates. The die assemblies (20, 90, 130, 140, 180, 252) can be used in the production of a wide number of human foods or animal feeds, and particularly aquatic feeds of the floating or sinking variety. In another aspect of the invention, an extruder (210) is provided having diverging and converging sections (212, 214) along the length thereof and defining corresponding flow paths (230, 246).
摘要:
Improved extruders and methods for the extrusion cooking of comestible products such as human foods or animal feeds are provided wherein the products may be produced with very low specific mechanical energy (SME) inputs as compared with conventional processing. The methods preferably involve introduction of very high levels of steam into the extruder barrel during processing, which concomitantly reduces necessary SME inputs required to achieve desired cook and expansion levels in the products. In accordance with the invention, fully-cooked pet foods can be fabricated with SME inputs of up to about 18 kWhr/T, whereas aquatic feeds can be fabricated with SME inputs of up to about 16 kWhr/T.
摘要:
Improved extruded starch-bearing products (e.g., starches, starch-bearing legumes, starch-bearing grains and formulations containing any of the foregoing) are provided having relatively high cook values and low cold water viscosities. The products are prepared by initial preconditioning to partially cook the starting material(s), followed by low shear extrusion cooking, with a total STE/SME ratio of at least about 4.