摘要:
A receiver (1300) includes a mixing digital-to-analog converter (DAC) (1306), a direct digital frequency synthesizer (DDFS) (132A) and an interface (134D). The mixing DAC (1306) includes a radio frequency (RF) transconductance section (1308) and a switching section (1310). The RE transconductance section (1308) includes an input for receiving an RF signal and an output for providing an RE current signal. The switching section (1310) is coupled to the RF transconductance section (1308) and includes inputs for receiving bits associated with a digital local oscillator (LO) signal and an output that is configured to provide an analog output signal. The DDFS (132A) includes outputs configured to provide the bits associated with the digital LO signal to the inputs of the switching section (1310). The interface (134D) is coupled to the DDFS (132A) and is configured to align the bits provided by the DDFS (132A) with a first clock signal.
摘要:
A receiver (300) includes a first mixing digital-to-analog converter (DAC) (336, 332), a second mixing DAC (338, 334), a direct digital frequency synthesizer (DDFS) (302), a phase correction circuit (340), a selectable load (306) and a magnitude correction circuit (350). The first mixing DAC (336, 332) includes a first input for receiving an input signal, a second input for receiving a digital first local oscillator (LO) signal and an output. The second mixing DAC (338, 334) includes a first input for receiving the input signal, a second input for receiving a digital second local oscillator (LO) signal and an output. The DDFS (302) is configured to provide the first and second LO signals, which are quadrature signals. The phase correction circuit (340) is configured to provide a phase correction signal to a control input of the DDFS (302). The first selectable load (306) includes an input coupled to the output of the first mixing DAC (336, 332) and a control input. The magnitude correction circuit (350) is configured to provide a first magnitude correction signal to the control input of the first selectable load (306).
摘要:
A receiver (300) includes a first mixing digital-to-analog converter (DAC) (336, 332), a second mixing DAC (338, 334), a direct digital frequency synthesizer (DDFS) (302), a phase correction circuit (340), a selectable load (306) and a magnitude correction circuit (350). The first mixing DAC (336, 332) includes a first input for receiving an input signal, a second input for receiving a digital first local oscillator (LO) signal and an output. The second mixing DAC (338, 334) includes a first input for receiving the input signal, a second input for receiving a digital second local oscillator (LO) signal and an output The DDFS (302) is configured to provide the first and second LO signals, which are quadrature signals. The phase correction circuit (340) is configured to provide a phase correction signal to a control input of the DDFS (302). The first selectable load (306) includes an input coupled to the output of the first mixing DAC (336, 332) and a control input. The magnitude correction circuit (350) is configured to provide a first magnitude correction signal to the control input of the first selectable load (306).
摘要:
A receiver (1300) includes a mixing digital-to-analog converter (DAC) (1306), a direct digital frequency synthesizer (DDFS) (132A) and an interface (134D). The mixing DAC (1306) includes a radio frequency (RF) transconductance section (1308) and a switching section (1310). The RE transconductance section (1308) includes an input for receiving an RF signal and an output for providing an RE current signal The switching section (1310) is coupled to the RF transconductance section (1308) and includes inputs for receiving bits associated with a digital local oscillator (LO) signal and an output that is configured to provide an analog output signal. The DDFS (132A) includes outputs configured to provide the bits associated with the digital LO signal to the inputs of the switching section (1310). The interface (134D) is coupled to the DDFS (132A) and is configured to align the bits provided by the DDFS (132A) with a first clock signal
摘要:
A frequency synthesizer includes analog components and digital components. The frequency synthesizer includes at least one shunt regulator that is coupled to a supply rail to provide power to at least one of the digital components. The frequency synthesizer also includes at least one series regulator that is coupled to the supply rail to provide power to at least one of the analog components.
摘要:
High frequency laser diode (LD) and electro-absorption modulator (EAM) integrated circuit drivers using a cascaded output switch architecture that increases the output current and voltage edge speed and reduces the peaking and ringing of the output waveform, thus improving the deterministic jitter performance. Also disclosed is a method and apparatus that provides a modulation current dependence of both turn-on and turn-off driving currents that lead to an optimal compromise between the edge speed and output overshoot for a wide range of modulation currents. A PTAT temperature dependence of both voltage swing and current level in the predriver assures a low variation of the overshoot and rise/fall time over a wide temperature range. Using the cascaded output switch architecture provides an easy way of on-chip summation of the modulation and bias currents. Biasing the cascode device with a supply and modulation current dependent base voltage provides an optimum headroom output switch.
摘要:
Several open-loop calibration techniques for phase-locked-loop circuits (PLL) that provide a process, temperature and divider modulus independence for the loop bandwidth and damping factor are disclosed. Two categories of open-loop techniques are presented. The first method uses only a single measurement of the output frequency from the oscillator and adjusts a single PLL loop element that performs a simultaneous calibration of both the loop bandwidth and damping factor. The output frequency is measured for a given value of the oscillator control signal and the charge-pump current is adjusted such that it cancels the process variation of the oscillator gain. The second method uses two separate and orthogonal calibration steps, both of them based on the measurement of the output frequency from the oscillator when a known excitation is applied to the open loop signal path. In the first step the loop bandwidth is calibrated by adjusting the charge-pump current based on the measurement of the forward path gain when applying a constant phase shift between the two clocks that go to the phase frequency detector, while the integral path is hold to a constant value. During the second step the damping factor is calibrated by adjusting the value of the integral loop filter capacitor based on the measurement of the oscillator output frequency when excited with a voltage proportional with the integral capacitor value, while the proportional control component is zeroed-out.
摘要:
A loop filter device and method for implementing a loop filter for a phase locked loop (“PLL”) circuit, which locks a frequency of a signal to a reference frequency, are disclosed. The loop filter includes a proportional path circuit and an integral path circuit. The proportional path circuit receives a charge pump output and determines and holds a charge to be directed to or taken from a PLL circuit throughout an update period based on a detected phase difference for the update period for locking a frequency of a signal for a PLL circuit to a reference frequency. The integral path circuit is coupled to the proportional path circuit, and the integral path circuit receives another charge pump output and tracks a total charge level for the PLL circuit based on phase differences for present and prior update periods.
摘要:
A reference clock generator includes an oscillator to generate a periodic signal, a shaping circuit and a filter. The shaping circuit shapes the periodic signal to generate a clock signal. The filter is located between the oscillator and the shaping circuit.
摘要:
A reference clock generator includes an oscillator to generate a periodic signal, a shaping circuit and a filter. The shaping circuit shapes the periodic signal to generate a clock signal. The filter is located between the oscillator and the shaping circuit.