摘要:
An exemplary system for facilitating sound localization by a bilateral cochlear implant patient includes 1) a processing facility configured to determine an interaural difference between a first audio signal detected by a first microphone associated with a first ear of a bilateral cochlear implant patient and a second audio signal detected by a second microphone associated with a second ear of the bilateral cochlear implant patient and generate, based on the determined interaural difference, an enhanced interaural level difference (ILD) associated with the low frequency acoustic content of the first and second audio signals and 2) a control facility configured to direct a first cochlear implant associated with the first ear and a second cochlear implant associated with the second ear to generate electrical stimulation representative of the low frequency acoustic content in accordance with the enhanced ILD. Corresponding systems and methods are also disclosed.
摘要:
An exemplary system includes 1) an electro-acoustic stimulation (“EAS”) subsystem that directs a cochlear implant to apply electrical stimulation to a patient, and directs a receiver to apply acoustic stimulation to the patient; and 2) a volume control subsystem communicatively coupled to the EAS subsystem and that facilitates independent control of a first volume level perceived by the patient when the electrical stimulation is applied and a second volume level perceived by the patient when the acoustic stimulation is applied.
摘要:
An exemplary system for facilitating sound localization by a bilateral cochlear implant patient includes 1) a processing facility configured to determine an interaural difference between a first audio signal detected by a first microphone associated with a first ear of a bilateral cochlear implant patient and a second audio signal detected by a second microphone associated with a second ear of the bilateral cochlear implant patient and generate, based on the determined interaural difference, an enhanced interaural level difference (ILD) associated with the low frequency acoustic content of the first and second audio signals and 2) a control facility configured to direct a first cochlear implant associated with the first ear and a second cochlear implant associated with the second ear to generate electrical stimulation representative of the low frequency acoustic content in accordance with the enhanced ILD. Corresponding systems and methods are also disclosed.
摘要:
An exemplary system includes an implantable cochlear stimulator implanted within a patient, a short electrode array coupled to the implantable cochlear stimulator and having a plurality of electrodes disposed thereon, and a sound processor communicatively coupled to the implantable cochlear stimulator. The sound processor may direct the implantable cochlear stimulator to apply a main current to a first electrode included in the plurality of electrodes and associated with a first pitch, direct the implantable cochlear stimulator to concurrently apply, during the application of the main current, a compensation current to a second electrode included in the plurality of electrodes and associated with a second pitch, and optimize an amount of the compensation current to result in a target pitch being presented to the patient that is distanced from the first pitch in a pitch direction opposite a pitch direction of the second pitch in relation to the first pitch.
摘要:
An exemplary system includes 1) a cochlear implant module configured to be implanted within a patient and including cochlear implant circuitry configured to apply electrical stimulation representative of one or more audio signals to the patient, 2) a first connector assembly coupled to the cochlear implant module and configured to be implanted within the patient, the first connector assembly including a first set of induction coils, 3) an implantable module configured to be implanted within the patient, and 4) a second connector assembly coupled to the implantable module and configured to be implanted within the patient, the second connector assembly including a second set of induction coils. The first and second sets of induction coils are configured to form a multi-channel inductive link between the implantable module and the cochlear implant module. Corresponding systems are also disclosed.
摘要:
An exemplary system includes 1) a cochlear implant module configured to be implanted within a patient and including cochlear implant circuitry configured to apply electrical stimulation representative of one or more audio signals to the patient, 2) a first connector assembly coupled to the cochlear implant module and configured to be implanted within the patient, the first connector assembly including a first set of induction coils, 3) an implantable module configured to be implanted within the patient, and 4) a second connector assembly coupled to the implantable module and configured to be implanted within the patient, the second connector assembly including a second set of induction coils. The first and second sets of induction coils are configured to form a multi-channel inductive link between the implantable module and the cochlear implant module. Corresponding systems are also disclosed.
摘要:
An exemplary sound processor included in a cochlear implant system associated with a patient 1) receives, from a fitting system while the sound processor is communicatively coupled to the fitting system, a command that sets a control parameter associated with the cochlear implant system to an initial value and data representative of a target value associated with the control parameter, 2) detects a decoupling of the sound processor from the fitting system, the decoupling resulting in the sound processor being in a non-fitting state, and 3) gradually adjusts, while the sound processor is in the non-fitting state, the control parameter from the initial value towards the target value in accordance with an adaption time course associated with the control parameter. Corresponding systems and methods are also disclosed.
摘要:
A system includes a sound processor included in an electro-acoustic stimulation (“EAS”) device and that directs a cochlear implant to apply electrical stimulation to a patient and a receiver to apply acoustic stimulation to the patient. The system further includes a volume control facility and a selection facility that selectively associates the volume control facility with the electrical stimulation in response to a first user input, selectively associates the volume control facility with the acoustic stimulation in response to a second user input, and selectively associates the volume control facility with both the electrical stimulation and the acoustic stimulation in response to a third user input.