Abstract:
An electronic device includes a memory that stores input matrices A and B, a cache memory, and a processor. The processor generates a compiled representation that includes values for acquiring data from input matrix A when processing instances of input data through the neural network, the values including a base address in input matrix A for each thread from among a number of threads and relative offsets, the relative offsets being distances between elements of input matrix A to be processed by the threads. The processor then stores, in the local cache memory, the compiled representation including the base address for each thread and the relative offsets.
Abstract:
Systems, apparatuses, and methods for efficient parallel execution of multiple work units in a processor by reducing a number of memory accesses are disclosed. A computing system includes a processor core with a parallel data architecture. One or more of a software application and firmware implement matrix operations and support the broadcast of shared data to multiple compute units of the processor core. The application creates thread groups by matching compute kernels of the application with data items, and grouping the resulting work units into thread groups. The application assigns the thread groups to compute units based on detecting shared data among the compute units. Rather than send multiple read access to a memory subsystem for the shared data, a single access request is generated. The single access request includes information to identify the multiple compute units for receiving the shared data when broadcasted.
Abstract:
Systems, apparatuses, and methods for efficient parallel execution of multiple work units in a processor by reducing a number of memory accesses are disclosed. A computing system includes a processor core with a parallel data architecture. The processor core executes a software application with matrix operations. The processor core supports the broadcast of shared data to multiple compute units of the processor core. A compiler or other code assigns thread groups to compute units based on detecting shared data among the compute units. Rather than send multiple read accesses to a memory subsystem for the shared data, the processor core generates a single access request. The single access request includes information to identify the multiple compute units for receiving the shared data when broadcasted by the processor core.
Abstract:
Systems, apparatuses, and methods for efficient parallel execution of multiple work units in a processor by reducing a number of memory accesses are disclosed. A computing system includes a processor core with a parallel data architecture. One or more of a software application and firmware implement matrix operations and support the broadcast of shared data to multiple compute units of the processor core. The application creates thread groups by matching compute kernels of the application with data items, and grouping the resulting work units into thread groups. The application assigns the thread groups to compute units based on detecting shared data among the compute units. Rather than send multiple read access to a memory subsystem for the shared data, a single access request is generated. The single access request includes information to identify the multiple compute units for receiving the shared data when broadcasted.
Abstract:
An electronic device includes a memory that stores input matrices A and B, a cache memory, and a processor. The processor generates a compiled representation that includes values for acquiring data from input matrix A when processing instances of input data through the neural network, the values including a base address in input matrix A for each thread from among a number of threads and relative offsets, the relative offsets being distances between elements of input matrix A to be processed by the threads. The processor then stores, in the local cache memory, the compiled representation including the base address for each thread and the relative offsets.
Abstract:
Systems, apparatuses, and methods for implementing an auto generation and tuning tool for convolution kernels are disclosed. A processor executes multiple tuning runs of a given layer of a neural network while using a different set of operating parameter values for each tuning run. The operating parameters can include one or more of input dataset fetch group size, output channel group size, and other parameters. The processor captures performance data for each tuning run and then after all tuning runs have finished, the processor determines which set of operating parameter values resulted in a better performance for the given neural network layer. The processor uses these operating parameter values for subsequent iterations of the given layer. The processor also performs the same techniques for other layers to determine which set of operating parameter values to use for each layer so as to maximize performance of the neural network.
Abstract:
Systems, apparatuses, and methods for implementing an auto generation and tuning tool for convolution kernels are disclosed. A processor executes multiple tuning runs of a given layer of a neural network while using a different set of operating parameter values for each tuning run. The operating parameters can include one or more of input dataset fetch group size, output channel group size, and other parameters. The processor captures performance data for each tuning run and then after all tuning runs have finished, the processor determines which set of operating parameter values resulted in a better performance for the given neural network layer. The processor uses these operating parameter values for subsequent iterations of the given layer. The processor also performs the same techniques for other layers to determine which set of operating parameter values to use for each layer so as to maximize performance of the neural network.
Abstract:
Systems, apparatuses, and methods for efficient parallel execution of multiple work units in a processor by reducing a number of memory accesses are disclosed. A computing system includes a processor core with a parallel data architecture. The processor core executes a software application with matrix operations. The processor core supports the broadcast of shared data to multiple compute units of the processor core. A compiler or other code assigns thread groups to compute units based on detecting shared data among the compute units. Rather than send multiple read accesses to a memory subsystem for the shared data, the processor core generates a single access request. The single access request includes information to identify the multiple compute units for receiving the shared data when broadcasted by the processor core.
Abstract:
Systems, apparatuses, and methods for efficient parallel execution of multiple work units in a processor by reducing a number of memory accesses are disclosed. A computing system includes a processor core with a parallel data architecture. One or more of a software application and firmware implement matrix operations and support the broadcast of shared data to multiple compute units of the processor core. The application creates thread groups by matching compute kernels of the application with data items, and grouping the resulting work units into thread groups. The application assigns the thread groups to compute units based on detecting shared data among the compute units. Rather than send multiple read access to a memory subsystem for the shared data, a single access request is generated. The single access request includes information to identify the multiple compute units for receiving the shared data when broadcasted.
Abstract:
A system, method, and computer program product are provided for tessellation using shaders. New graphics pipeline stages implemented by shaders are introduced, including an inner ring shader, an outer edge shader, and topologic shader, which work together with a domain shader and geometry shader to provide tessellated points and primitives. A hull shader is modified to compute values used by the new shaders to perform tessellation algorithms. This approach provides parallelism and customizability to the presently static tessellation engine implementation.