Abstract:
A method for detecting and correcting an error in a circuit is provided. The circuit is configured to receive an input signal and clock the input signal with a rising and falling timing signal. The method includes detecting late arrival signal transition of the input signal, at an intermediate point of a path, the path being one through which the input signal transits. The method further includes predicting an error in the input signal in response to detecting the late arrival signal transition at the intermediate point of the path. In addition, the method includes correcting the error in the input signal by manipulating the timing signal and/or a supply voltage.
Abstract:
In various embodiments of the present disclosure, there is provided a receiver for body channel communication. The receiver includes an electrode configured to receive an incoming signal transmitted as a multi-level transmission signal from a transmitter through a body channel, a differentiator configured to obtain a time derivative of the incoming signal indicating a plurality of data transitions, and an analog to digital converter configured to generate a multi-level output signal representing the multi-level transmission signal based on the plurality of data transitions. A corresponding method of controlling a receiver for body channel communications is provided.
Abstract:
In various embodiments, a circuit arrangement may be provided. The circuit arrangement may include a level shifting stage configured to be coupled to a first reference voltage, the level shifting stage having an output node. The circuit arrangement may further include a first input electrode in electrical connection with the level shifting stage. The circuit arrangement may also include a second input electrode in electrical connection with the level shifting stage. The circuit arrangement may further include a load having a first end and a second end, the first end coupled to the level shifting stage and the second end for coupling to a second reference voltage. In addition, the circuit arrangement may include a bypass circuit element connected in parallel to the load. The bypass circuit element may be configured to allow current to flow through upon application of an external voltage for bypassing the load.
Abstract:
A circuit arrangement may be provided including a level shifting stage configured to be coupled to a first reference voltage and a second reference voltage. The circuit arrangement may also include a first input electrode in electrical connection with the level shifting stage for coupling a first input voltage and a second input electrode in electrical connection with the level shifting stage for coupling a second input voltage. The level shifting stage may be configured to generate an output voltage above a predetermined output level at the output node due to the first reference voltage when the first input voltage is in the first logic state and the second input voltage is in the second logic state. The circuit arrangement may also include a feedback circuit coupled to the output stage and the level shifting stage and a voltage stabilization circuit coupled to the level shifting stage.
Abstract:
A circuit arrangement may be provided including a level shifting stage configured to be coupled to a first reference voltage and a second reference voltage. The circuit arrangement may also include a first input electrode in electrical connection with the level shifting stage for coupling a first input voltage and a second input electrode in electrical connection with the level shifting stage for coupling a second input voltage. The level shifting stage may be configured to generate an output voltage above a predetermined output level at the output node due to the first reference voltage when the first input voltage is in the first logic state and the second input voltage is in the second logic state. The circuit arrangement may also include a feedback circuit coupled to the output stage and the level shifting stage and a voltage stabilization circuit coupled to the level shifting stage.
Abstract:
An electrocardiogram (ECG) signal processing system is provided. The ECG signal processing system comprises an analog-to-digital converter (ADC) configured to convert an input analog ECG signal into a digital ECG signal, and a digital signal processing engine (DSPE) coupled to the ADC to receive the digital ECG signal. The DSPE is configured to decompose and reconstruct the digital ECG signal. A dynamic system clock source is coupled to the ADC and the DSPE for dynamic signal sampling, the dynamic system clock source clocking the ADC and the DSPE at a first frequency f1 to detect one or more first parameters of the input analog ECG signal and at a second frequency f2 to detect one or more second parameters of the input analog ECG signal.
Abstract:
Various embodiments may relate to a clocking circuit arrangement. The clocking circuit arrangement may include a clock source, as well as a global monitoring circuit arrangement including a monitoring tunable clock buffer, a reference clock buffer, a glitch capturing circuit arrangement, and a voltage generation circuit arrangement. The clocking circuit arrangement may further include a main circuit arrangement including one or more further tunable clock buffers.
Abstract:
In various embodiments, a circuit arrangement may be provided. The circuit arrangement may include a level shifting stage configured to be coupled to a first reference voltage, the level shifting stage having an output node. The circuit arrangement may further include a first input electrode in electrical connection with the level shifting stage. The circuit arrangement may also include a second input electrode in electrical connection with the level shifting stage. The circuit arrangement may further include a load having a first end and a second end, the first end coupled to the level shifting stage and the second end for coupling to a second reference voltage. In addition, the circuit arrangement may include a bypass circuit element connected in parallel to the load. The bypass circuit element may be configured to allow current to flow through upon application of an external voltage for bypassing the load.