Abstract:
There is provided a method of generating a secret key at a first node for data communication between the first node and a second node. The method includes obtaining a channel estimate of a communication channel between the first and second nodes; obtaining a time-frequency matrix associated with the communication channel based on a time-frequency transformation of the channel estimate; and producing the secret key based on the time-frequency matrix. There is also provided a corresponding key generator for generating a secret key.
Abstract:
The present invention is directed to a communication device of a wireless communication network, the communication device including a message generator configured to generate a beacon message having a traffic indication map (TIM) information element (IE), wherein the TIM IE includes a partial virtual bitmap field including at least one cluster; a determiner configured to determine for at least one cluster information indicating whether data is available in the communication device to be transmitted to a plurality of communication terminals of the wireless communication network; an encoder configured to determine an encoding mode for the information depending on the information and to encode the information based on the encoding mode; and a transmitter configured to broadcast the beacon message to the plurality of communication terminals corresponding to the at least one cluster. Methods of simultaneously addressing a plurality of communication terminals in the wireless communication network are also disclosed.
Abstract:
A method for generating a secret key at a first node for data communication between the first node and a second node. A channel estimate of a communication channel between the first and second nodes is obtained. A time-frequency matrix associated with the communication channel is then obtained based on the time-frequency transformation of the channel estimate. The secret key is then produced based on the time-frequency matrix. Furthermore, a corresponding key generator may be provided for generating a secret key.
Abstract:
The present invention is directed to a communication device of a wireless communication network, the communication device including a message generator configured to generate a beacon message having a traffic indication map (TIM) information element (IE), wherein the TIM IE includes a partial virtual bitmap field including at least one cluster; a determiner configured to determine for at least one cluster information indicating whether data is available in the communication device to be transmitted to a plurality of communication terminals of the wireless communication network; an encoder configured to determine an encoding mode for the information depending on the information and to encode the information based on the encoding mode; and a transmitter configured to broadcast the beacon message to the plurality of communication terminals corresponding to the at least one cluster. Methods of simultaneously addressing a plurality of communication terminals in the wireless communication network are also disclosed.
Abstract:
Methods and systems are proposed for transmitting data from a source (110) to a destination (130) via a relay station (120) having multiple antennae (122, 124). The relay station (120) receives from the source a message containing the data and a first cyclic prefix. It does this using each of its antennae (122, 124), so producing multiple respective received signals. In certain embodiments, the relay station (120) removes the first cyclic prefix from the received signals, replacing it with a new one. In other embodiments, the relay station (120) removes only a portion of the first cyclic prefix. In either case, the relay station (120) may apply space-time coding to generate second signals, which it transmits to the destination (130), which extracts the data. Methods are also proposed for estimating parameters of the channel, to enable the destination (130) to decode the data.
Abstract:
A system for controlling a network is provided. The system may include a circuit configured to provide interface support to a plurality of remote radio heads. Each remote radio head may support multiple radio access technologies. The system may include a controller configured to control the circuit and the plurality of remote radio heads. The controller may be configured to control the circuit and the plurality of remote radio heads based on statistical information inferred from the data traversing through the circuit and the real time network state information of the network. The circuit may be connected to each remote radio head of the plurality of remote radio heads via one or more respective fronthaul links.
Abstract:
According to various embodiments, a radio communication method may be provided. The radio communication method may include: determining in a cell at least one first subframe; determining in the cell at least one second subframe; allocating downlink user traffic in the cell during the first subframe with a low priority; and transmitting a handover command to a user equipment based on the second subframe.
Abstract:
The present invention is a circuit arrangement for a wireless cellular network. The circuit arrangement includes a determiner configured to determine a priority value of each packet of a plurality of packets based on at least a position of a video frame in a group of pictures and a type of the video frame, the video frame or a part thereof being contained in the packet, wherein the type of video frame comprises I frame data or P frame data; and wherein the determiner is further configured to set the priority value of a packet including I frame data lower than the priority value of at least one other packet including P frame data; and a controller configured to control scheduling of the packet based on the determined priority value for a communication device in a wireless cellular network. A method of determining a priority of packet scheduling is also disclosed.
Abstract:
Methods and systems are proposed for transmitting data from a source (110) to a destination (130) via a relay station (120) having multiple antennae (122, 124). The relay station (120) receives from the source a message containing the data and a first cyclic prefix. It does this using each of its antennae (122, 124), so producing multiple respective received signals. In certain embodiments, the relay station (120) removes the first cyclic prefix from the received signals, replacing it with a new one. In other embodiments, the relay station (120) removes only a portion of the first cyclic prefix. In either case, the relay station (120) may apply space-time coding to generate second signals, which it transmits to the destination (130), which extracts the data. Methods are also proposed for estimating parameters of the channel, to enable the destination (130) to decode the data.
Abstract:
The present invention is a circuit arrangement for a wireless cellular network. The circuit arrangement includes a determiner configured to determine a priority value of each packet of a plurality of packets based on at least a position of a video frame in a group of pictures and a type of the video frame, the video frame or a part thereof being contained in the packet, wherein the type of video frame comprises I frame data or P frame data; and wherein the determiner is further configured to set the priority value of a packet including I frame data lower than the priority value of at least one other packet including P frame data; and a controller configured to control scheduling of the packet based on the determined priority value for a communication device in a wireless cellular network. A method of determining a priority of packet scheduling is also disclosed.