摘要:
Exemplary embodiments of the present invention comprise a method for the use of an intra-disk redundancy storage protection operation for the scrubbing of a disk. The method comprises initiating a disk scrubbing operation upon each disk of a plurality of disks that are comprised within a storage disk array, issuing a disk scrubbing command for a predetermined segment of the disks that are comprised within the storage disk array at a predetermined time interval, and identifying an unrecoverable segment on a disk. The method further comprises determining if unrecoverable sectors comprised within the unrecoverable segment can be reconstructed, and reconstructing the unrecoverable sectors of the unrecoverable segment and relocating the segment to a spare storage location on the disk in the event that the segment cannot be reconstructed within its original storage location.
摘要:
Exemplary embodiments of the present invention comprise a method for the use of an intra-disk redundancy storage protection operation for the scrubbing of a disk. The method comprises initiating a disk scrubbing operation upon each disk of a plurality of disks that are comprised within a storage disk array, issuing a disk scrubbing command for a predetermined segment of the disks that are comprised within the storage disk array at a predetermined time interval, and identifying an unrecoverable segment on a disk. The method further comprises determining if unrecoverable sectors comprised within the unrecoverable segment can be reconstructed, and reconstructing the unrecoverable sectors of the unrecoverable segment and relocating the segment to a spare storage location on the disk in the event that the segment cannot be reconstructed within its original storage location.
摘要:
A mechanism is provided for controlling a solid state storage device in which the solid state storage comprises erasable blocks each comprising a plurality of data write locations. Input data is stored in successive groups of data write locations, each group comprising write locations in a set of erasable blocks in each of a plurality of logical subdivisions of the solid state storage. The input data is error correction encoded such that each group contains an error correction code for the input data in that group. Metadata, indicating the location of input data in the solid state storage, is maintained in memory. An indication of validity of data stored in each data write location is also maintained. Prior to erasing a block, valid input data is recovered from the group containing write locations in that block. The recovered data is then re-stored as new input data.
摘要:
In one embodiment, a method of storing data includes storing a first copy of data in a solid state memory and storing a second copy of the data in a hard disk drive memory substantially simultaneously with the storing the first copy. In another embodiment, a system for storing data includes a solid state memory, at least one hard disk drive memory, and a controller for controlling storage of data in the solid state memory and the hard disk drive memory. Other methods, systems, and computer program products are also described according to various embodiments.
摘要:
For efficient track destage in secondary storage in a more effective manner, for temporal bits employed with sequential bits for controlling the timing for destaging the track in a primary storage, the temporal bits and sequential bits are transferred from the primary storage to the secondary storage. The temporal bits are allowed to age on the secondary storage.
摘要:
For movement of partial data segments within a computing storage environment having lower and higher levels of cache by a processor, a whole data segment containing one of the partial data segments is promoted to both the lower and higher levels of cache. Requested data of the whole data segment is split and positioned at a Most Recently Used (MRU) portion of a demotion queue of the higher level of cache. Unrequested data of the whole data segment is split and positioned at a Least Recently Used (LRU) portion of the demotion queue of the higher level of cache. The unrequested data is pinned in place until a write of the whole data segment to the lower level of cache completes.
摘要:
Exemplary embodiments include a method for reducing access contention in a flash-based memory system, the method including selecting a chip stripe in a free state, from a memory device having a plurality of channels and a plurality of memory blocks, wherein the chip stripe includes a plurality of pages, setting the ship stripe to a write state, setting a write queue head in each of the plurality of channels, for each of the plurality of channels in the flash stripe, setting a write queue head to a first free page in a chip belonging to the channel from the chip stripe, allocating write requests according to a write allocation scheduler among the channels, generating a page write and in response to the page write, incrementing the write queue head, and setting the chip stripe into an on-line state when it is full.
摘要:
In one embodiment, a method of storing data includes storing a first copy of data in a solid state memory and storing a second copy of the data in a hard disk drive memory substantially simultaneously with the storing the first copy. In another embodiment, a system for storing data includes a solid state memory, at least one hard disk drive memory, and a controller for controlling storage of data in the solid state memory and the hard disk drive memory. Other methods, systems, and computer program products are also described according to various embodiments.
摘要:
Exemplary embodiments include a method for reducing access contention in a flash-based memory system, the method including selecting a chip stripe in a free state, from a memory device having a plurality of channels and a plurality of memory blocks, wherein the chip stripe includes a plurality of pages, setting the ship stripe to a write state, setting a write queue head in each of the plurality of channels, for each of the plurality of channels in the flash stripe, setting a write queue head to a first free page in a chip belonging to the channel from the chip stripe, allocating write requests according to a write allocation scheduler among the channels, generating a page write and in response to the page write, incrementing the write queue head, and setting the chip stripe into an on-line state when it is full.
摘要:
A method for wear-leveling cells, pages, sub-pages or blocks of a memory such as a flash memory includes receiving (S10) a chunk of data to be written on the cell, page, sub-page or block of the memory; counting (S40), in the received chunk of data, a number of times a given type of binary data ‘0’ or ‘1’ is to be written; and distributing (S50) the writing of the received chunk of data among cells, pages, sub-pages or blocks of the memory such as to wear-level the memory with respect to the number of the given type of binary data ‘0’ or ‘1’ counted in the chunk of data to be written.