摘要:
A method and apparatus for generating a single statically defined downlink reference MCS table consisting of transport block sizes (TBSs) computed for 29 MCSs for each of j PRBs where j=1, . . . , NRBDL. Three entries of the MCS table are reserved for implicit modulation order signaling (e.g. in the downlink) or implicit redundancy version signaling (e.g. in the uplink). Each MCS entry in the table is populated by a TBS and the table entries are accessed based on a 5-bit MCS index and resource allocation information, indicating the number of PRBs is signaled via a scheduling message which may be a grant or assignment message. A grant or assignment message may further include a 5-bit MCS field for each transport block which, along with the resource allocation information, enables the UE to determine the scheduled TBS.
摘要:
A method and apparatus for generating a single statically defined downlink reference MCS table consisting of transport block sizes (TBSs) computed for 29 MCSs for each of j PRBs where j=1, . . . , NRBDL. Three entries of the MCS table are reserved for implicit modulation order signaling (e.g. in the downlink) or implicit redundancy version signaling (e.g. in the uplink). Each MCS entry in the table is populated by a TBS and the table entries are accessed based on a 5-bit MCS index and resource allocation information, indicating the number of PRBs is signaled via a scheduling message which may be a grant or assignment message. A grant or assignment message may further include a 5-bit MCS field for each transport block which, along with the resource allocation information, enables the UE to determine the scheduled TBS.
摘要:
A wireless communication terminal including a controller coupled to a transceiver, configured to receive a first and second control messages on an anchor carrier is disclosed. The first control message includes a resource assignment for the anchor carrier and the second control message is associated with a set of component carriers that are distinct from the anchor carrier. The controller determines a resource assignment for at least one component carrier in the set of component carriers using both the first and the second control messages.
摘要:
A wireless communication user terminal obtains uplink access configuration information on a physical downlink control channel (PDCCH) addressed to a plurality of user terminals by processing the PDCCH based on a first system information received from a base station on a physical broadcast channel (PBCH) and based on synchronization information. The terminal sends a signature waveform based on the uplink access configuration information, prior to receiving system information in addition to the first system information, whereby the signature waveform enables the base station to transition from a relatively low power operating mode to a relatively high power operating mode.
摘要:
Methods and apparatus' of determining radio link quality are disclosed. According to various implementations, a user equipment detects an out-of-synchronization condition corresponding to a first control channel, and monitors a second control channel in response to the detecting the out-of synchronization condition.
摘要:
A wireless user terminal includes a controller communicably coupled to a transceiver. The controller is configured to determine scheduling grant information and additional scheduling grant information from a channel encoded scheduling grant received at the transceiver, wherein the channel encoded scheduling grant includes encoded parity bits combined with the scheduling grant information and the encoded parity bits include the additional scheduling grant information exclusive OR-ed with parity bits obtained from the scheduling grant information.
摘要:
A wireless base unit (102) supporting carrier aggregation determines a truncation time period (159, 169) in order to create a reduced subframe component (154, 164) on an additional component carrier (120) such that the truncated subframe component (154, 164) does not interfere with the control region (171, 172) of a subframe (170, 180) transmitted on an overlapping component carrier (130) by an uncoordinated second base unit (105). The wireless base unit (102) transmits the truncated subframe component (154, 164) and also transmits truncation time period information within a control region (151, 161) of an anchor carrier (110). A remote terminal (104, 108) that supports carrier aggregation searches a control region (151, 161) of a subframe (150, 160) transmitted on the anchor carrier (110) for truncation information and uses the truncation information to determine a boundary of a data region in a subframe component (154, 164) received on the additional component carrier (120).
摘要:
Various methods and apparatuses for receiving a control channel involve a communication device monitoring a first control and receiving information from a network regarding the configuration of a second control channel. The communication device receives an uplink grant from the network; transmits a message to the network, in which the message indicates to the network that the communication device is capable of monitoring the second control channel. The communication device monitors the second control channel based on the configuration information receiving via the first control channel.
摘要:
A wireless user terminal includes a controller communicably coupled to a transceiver. The controller is configured to determine scheduling grant information and additional scheduling grant information from a channel encoded scheduling grant received at the transceiver, wherein the channel encoded scheduling grant includes encoded parity bits combined with the scheduling grant information and the encoded parity bits include the additional scheduling grant information exclusive OR-ed with parity bits obtained from the scheduling grant information.
摘要:
A wireless communication infrastructure entity including a transceiver coupled to a controller configured to generate parity bits based on scheduling grant information and to encode the parity bits based on additional scheduling grant information not used to generate the parity bits, wherein the encoded parity bits are combined with the scheduling grant information. The additional scheduling grant information may be transport block size or redundancy version information.