摘要:
Techniques are described to combine image data from multiple images with different exposures into a relatively high dynamic range image. A first image of a scene may be generated with a first operational mode of an image processing system. A second image of the scene may be generated with a second different operational mode of the image processing system. The first image may be of a first spatial resolution, while the second image may be of a second spatial resolution. For example, the first spatial resolution may be higher than the second spatial resolution. The first image and the second image may be combined into an output image of the scene. The output image may be of a higher dynamic range than either of the first image and the second image and may be of a spatial resolution higher than the second spatial resolution.
摘要:
Techniques are described to combine image data from multiple images with different exposures into a relatively high dynamic range image. A first image of a scene may be generated with a first operational mode of an image processing system. A second image of the scene may be generated with a second different operational mode of the image processing system. The first image may be of a first spatial resolution, while the second image may be of a second spatial resolution. For example, the first spatial resolution may be higher than the second spatial resolution. The first image and the second image may be combined into an output image of the scene. The output image may be of a higher dynamic range than either of the first image and the second image and may be of a spatial resolution higher than the second spatial resolution.
摘要:
High dynamic range 3D images are generated with relatively narrow dynamic range image sensors. Input frames of different views may be set to different exposure settings. Pixels in the input frames may be normalized to a common range of luminance levels. Disparity between normalized pixels in the input frames may be computed and interpolated. The pixels in the different input frames may be shifted to, or stay in, a common reference frame. The pre-normalized luminance levels of the pixels may be used to create high dynamic range pixels that make up one, two or more output frames of different views. Further, a modulated synopter with electronic mirrors is combined with a stereoscopic camera to capture monoscopic HDR, alternating monoscopic HDR and stereoscopic LDR images, or stereoscopic HDR images.
摘要:
Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.
摘要:
Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.
摘要:
High dynamic range 3D images are generated with relatively narrow dynamic range image sensors. Input frames of different views may be set to different exposure settings. Pixels in the input frames may be normalized to a common range of luminance levels. Disparity between normalized pixels in the input frames may be computed and interpolated. The pixels in the different input frames may be shifted to, or stay in, a common reference frame. The pre-normalized luminance levels of the pixels may be used to create high dynamic range pixels that make up one, two or more output frames of different views. Further, a modulated synopter with electronic mirrors is combined with a stereoscopic camera to capture monoscopic HDR, alternating monoscopic HDR and stereoscopic LDR images, or stereoscopic HDR images.
摘要:
Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.
摘要:
In a method to generate a tone-mapped image from a high-dynamic range image (HDR), an input HDR image is converted into a logarithmic domain and a global tone-mapping operator generates a high-resolution gray scale ratio image from the input HDR image. Based at least in part on the high-resolution gray scale ratio image, at least two different gray scale ratio images are generated and are merged together to generate a local multiscale gray scale ratio image that represents a weighted combination of the at least two different gray scale ratio images, each being of a different spatial resolution level. An output tone-mapped image is generated based on the high-resolution gray scale image and the local multiscale gray scale ratio image.
摘要:
Methods and apparatus according to various aspects take as input image data in a lower-dynamic-range (LDR) format and produce as output enhanced image data having a dynamic range greater than that of the input image data (i.e. higher-dynamic range (HDR) image data). In some embodiments, the methods are applied to video data and are performed in real-time (i.e. processing of video frames to enhance the dynamic range of the video frames is completed at least on average at the frame rate of the video signal).
摘要:
A data structure defining a high dynamic range image comprises a tone map having a reduced dynamic range and HDR information. The high dynamic range image can be reconstructed from the tone map and the HDR information. The data structure can be backwards compatible with legacy hardware or software viewers. The data structure may comprise a JFIF file having the tone map encoded as a JPEG image with the HDR information in an application extension or comment field of the JFIF file, or a MPEG file having the tone map encoded as a MPEG image with the HDR information in a video or audio channel of the MPEG file. Apparatus and methods for encoding or decoding the data structure may apply pre- or post correction to compensate for lossy encoding of the high dynamic range information.