摘要:
A nonaqueous electrolytic secondary battery includes a negative electrode, a positive electrode, and a nonaqueous electrolytic solution including an electrolytic salt dissolved in a nonaqueous solvent. A polymer is added to the nonaqueous electrolytic solution. Also, a method of making a nonaqueous electrolytic secondary battery includes the steps of placing a negative electrode, a positive electrode, and a nonaqueous electrolytic solution including an electrolytic salt dissolved in a nonaqueous solvent, in a battery housing to assemble a battery; and charging and discharging the battery under overcharge conditions or applying a pulse voltage to the battery.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by-the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
摘要:
A method for making a negative electrode component used in a nonaqueous secondary battery that includes the steps of polishing the surface of the negative electrode component by irradiating the surface with light to produce a negative electrode that includes a carbonaceous material in which the ratio RG=Gs/Gb is at least 4.5, where Gs is the degree of graphitization the carbonaceous material as determined by a surface-enhanced Raman spectrum and Gb is degree of graphitization of the carbonaceous material as determined by a Raman spectrum measured using argon laser light and both Gs and Gb are measured under set parameters.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
摘要:
A negative electrode of a nonaqueous secondary battery is formed of a carbonaceous material. The ratio RG=Gs/Gb of the degree of graphitization Gs of the carbonaceous material, determined by a surface-enhanced Raman spectrum, to the degree of graphitization Gb, determined by a Raman spectrum measured using argon laser light, is at least 4.5. Alternatively, the carbonaceous material has a peak in a wavelength range above 1,360 cm−1 in a surface-enhanced Raman spectrum which is measured by the same surface-enhanced Raman spectrum. The deterioration of the nonaqueous secondary battery is suppressed during use in high-temperature environments and high capacity is maintained for long periods.
摘要:
A battery capable of improving high-temperature characteristics is provided. The battery includes a cathode, an anode and an electrolytic solution. A separator provided between the cathode and the anode is impregnated with the electrolytic solution. A solvent of the electrolytic solution includes a main solvent such as a cyclic carbonate which includes halogen and a sub solvent such as carbonate dimer.
摘要:
A battery with the high capacity, the superior cycle characteristics, and the superior initial charge and discharge efficiency, and an anode active material used for it are provided. The anode active material contains at least tin, cobalt, carbon, and phosphorus as an element. A carbon content is from 9.9 wt % to 29.7 wt %, a phosphorus content is from 0.1 wt % to 2.2 wt %, and a cobalt ration to the total of the tin and the cobalt is from 24 wt % to 70 wt %.
摘要:
A battery with a high capacity and superior cycle characteristics and an anode active material used in the battery are provided. An anode includes an anode active material capable of reacting with lithium. The anode active material includes at least tin, cobalt and carbon as elements, and the carbon content is within a range from 9.9 wt % to 29.7 wt % inclusive, and the ratio of cobalt to the total of tin and cobalt is within a range from 30 wt % to 70 wt % inclusive. Thereby, while a high capacity is maintained, cycle characteristics can be improved.