摘要:
A fuel cell power plant system includes the ability to operate an enthalpy recovery device even under cold conditions. A bypass arrangement allows for selectively bypassing one or more portions of the enthalpy recovery device under selected conditions. In one example, the enthalpy recovery device is completely bypassed under selected temperature conditions to allow the device to freeze and then later to be used under more favorable temperature conditions. In another example, the enthalpy recovery device is selectively bypassed during a system startup operation. One example includes a heater associated with the enthalpy recovery device. Another example includes preheating oxidant supplied to one portion of the enthalpy recovery device.
摘要:
Water flow field inlet manifolds (33, 37) are disposed at the fuel cell stack (11) base. Water flow field outlet manifolds (34, 38) are located at the fuel cell stack top. Outlet and inlet manifolds are interconnected (41-43, 47, 49, 50) so gas bubbles leaking through the porous water transport plate cause flow by natural convection, with no mechanical water pump. Variation in water level within a standpipe (58) controls (56, 60, 62, 63) the temperature or flow of coolant. In another embodiment, the water is not circulated, but gas and excess water are vented from the water outlet manifolds. Water channels (70) may be vertical. A hydrophobic region (80) provides gas leakage to ensure bubble pumping of water. An external heat exchanger (77) maximizes water density differential for convective flow.
摘要:
A coolant treatment system for a direct antifreeze cooled fuel cell power plant including a degassifier for providing interaction between an oxidant and an antifreeze solution which has circulated throughout the fuel cell power plant so that dissolved gases within the antifreeze solution are removed. The fuel cell power plant is configured to allow the antifreeze solution to be in direct fluid communication with the fuel cell assemblies comprising the fuel cell power plant.
摘要:
A method and apparatus for removing contaminants from the coolant supply of a fuel cell power plant, wherein coolant which has been exhausted from the fuel cell power plant is fed to an oxidant manifold. The exhausted coolant interacts with the oxidant flowing through the oxidant manifold, thereby effectuating removal of contaminants from the exhausted coolant.
摘要:
The invention is an operating system for a fuel cell power plant that includes at least one fuel cell for producing electrical energy from a reducing and oxidant fluid and fuel processing components including a reformer and a burner for processing a hydrocarbon fuel into the reducing fluid, and a direct mass and heat transfer device secured in fluid communication with both a process oxidant stream and a plant exhaust passage, so that the device directly transfers mass such as water exiting the plant in a plant exhaust stream back into the plant within the process oxidant stream. The invention also includes a split oxidant passage that directs the process oxidant stream through the fuel cell and a reformer feed portion of the process oxidant stream into fluid communication with the fuel processing components. The system may also include an anode exhaust passage that directs an anode exhaust from the fuel cell into the burner, then directs the oxidized anode exhaust stream from the burner in heat exchange relationship with the reformer feed portion.
摘要:
A water treatment system for a fuel cell stack, wherein a degassifier provides for interaction between an oxidant and a coolant which has circulated throughout the fuel cell stack so that dissolved gases within the circulated coolant are removed.
摘要:
A fuel cell power plant having a plurality of functionally integrated components including a fuel cell assembly provided with a fuel stream, an oxidant stream and a coolant stream. The fuel cell power plant functionally integrates a mass and heat recovery device for promoting a transfer of thermal energy and moisture between a first gaseous stream and a second gaseous stream, and a burner for processing the fuel exhausted from the fuel cell assembly during operation thereof. A housing chamber is utilized which accepts the oxidant stream exhausted from the fuel cell assembly after the exhausted oxidant stream has merged with a burner gaseous stream exhausted from the burner. The resultant merged airflow is subsequently directed to the housing chamber and to the mass and heat recovery device as the first gaseous stream.
摘要:
A direct antifreeze cooled fuel cell is disclosed for producing electrical energy from reducing and process oxidant fluid streams that includes an electrolyte secured between an anode catalyst and a cathode catalyst; a porous anode substrate secured in direct fluid communication with and supporting the anode catalyst; a porous wetproofed cathode substrate secured in direct fluid communication with and supporting the cathode catalyst; a porous water transport or cooler plate secured in direct fluid communication with the porous cathode substrate; and, a direct antifreeze solution passing through the porous water transport plate. A preferred direct antifreeze solution passing through the porous water transport plate remains essentially within the water transport plate and does not poison the catalysts.
摘要:
A fine pore enthalpy exchange barrier is disclosed for use with a fuel cell power plant. The barrier includes a support matrix that defines pores and a liquid transfer medium that fills the pores creating a gas barrier. An inlet surface of the fine pore enthalpy exchange barrier is positioned in contact with a process oxidant inlet stream entering a fuel cell power plant, and an opposed exhaust surface of the barrier is positioned in contact with an exhaust stream exiting the plant so that water and heat exchange from the exhaust stream directly into the process oxidant inlet stream to heat and humidify the stream as it enters the plant. The liquid transfer medium may include water, aqueous salt solutions, aqueous acid solutions, or organic antifreeze water solutions.
摘要:
A proton exchange membrane (PEM) fuel cell includes fuel and oxidant flow field plates (26, 40) having fuel and oxidant channels (27, 28; 41, 44), and water channels, the ends (29, 48) of which that are adjacent to the corresponding reactant gas inlet manifold (34, 42) are dead ended, the other ends (31, 50) draining excess water into the corresponding reactant gas exhaust manifold (36, 45). Flow restrictors (39, 47) maintain reactant gas pressure above exit manifold pressure, and may comprise interdigitated channels (65, 66; 76, 78). Solid reactant gas flow field plates have small holes (85, 88) between reactant gas channels (27, 28; 41) and water drain channels (29, 30; 49, 50). In one embodiment, the fuel cells of a stack may be separated by either coolant plates (51) or solid plates (55) or both. In a second embodiment, coolant plates (51a) have weep holes (57) that inject water into the ends (29) of the reactant gas water channels which are in the region of the inlet manifold (34), thereby assuring humidification of the reactants.