Abstract:
A first user equipment accesses, based on first information in a first downlink control information (DCI) message addressed to the first user equipment, one or more of a plurality of sets of information indicating pairings for multiuser MIMO from a table stored in the first user equipment. The first user equipment performs interference suppression or cancellation for one or more second user equipment based on information in the one of the plurality of sets.
Abstract:
An Active Antenna System (AAS) operated as a static AAS is used to generate a static beam from signals applied to its input and based on received AAS configuration information. The AAS configuration information is received by a processor coupled to all of the components of the AAS and said processor converts the received AAS configuration information to control signals causing said components to generate the static beam.
Abstract:
A first cell transmits a virtual cell identifier and state information associated with the virtual cell identifier over an interface to a second cell. The first cell and one or more third cells use the virtual cell identifier for transmissions to first user equipment. The state information indicates one of a plurality of states that indicate whether the virtual cell identifier is associated with at least one non-virtual reference signal for the first cell, the second cell, or one or more third cells. The second cell receives the virtual cell identifier and the state information and transmits the virtual cell identifier and state information over an air interface to second user equipment served by the second cell. The second user equipment performs interference cancellation or suppression of transmissions to the first user equipment based on the virtual cell identifier and the state information.
Abstract:
A first cell transmits a virtual cell identifier and state information associated with the virtual cell identifier over an interface to a second cell. The first cell and one or more third cells use the virtual cell identifier for transmissions to first user equipment. The state information indicates one of a plurality of states that indicate whether the virtual cell identifier is associated with at least one non-virtual reference signal for the first cell, the second cell, or one or more third cells. The second cell receives the virtual cell identifier and the state information and transmits the virtual cell identifier and state information over an air interface to second user equipment served by the second cell. The second user equipment performs interference cancellation or suppression of transmissions to the first user equipment based on the virtual cell identifier and the state information.
Abstract:
The present disclosure provides methods and apparatuses for HARQ retransmission on an unlicensed carrier in an LTE-LAA system. A method in the base station includes: performing a CCA detection on the unlicensed carrier to determine energy on the unlicensed carrier and, at the same time, initiating an HARQ discarding timer for the unlicensed carrier, when the base station and a UE operate on the unlicensed carrier; comparing the determined energy with a predetermined CCA threshold; if the determined energy on the unlicensed carrier is not smaller than the CCA threshold until the HARQ discarding timer is expired, giving up the HARQ retransmission on the unlicensed carrier; and if the energy is detected to be smaller than the CCA threshold before the HARQ discarding timer is expired, continuing the HARQ retransmission on the unlicensed carrier.
Abstract:
Embodiments relate to apparatuses, methods and a computer programs for a mobile transceiver (100) and a base station transceiver (200). The mobile transceiver apparatus (10) comprises means for receiving (12) radio signals from two or more base station transceivers, the means for receiving (12) further having a receive sensitivity determining a possibility to decode data from a radio signal of one of the two or more base station transceivers, while also receiving radio signals from the other of the two or more base station transceivers. The mobile transceiver apparatus further comprises means for providing (14) sensitivity information on the receive sensitivity to an associated base station transceiver (200). The base station transceiver apparatus (20) comprises means for receiving (22) the sensitivity information on the receiver sensitivity and means for determining (24) configuration information on a measurement configuration for the mobile transceiver (100). The configuration information comprises information on a signal quality measurement at the mobile transceiver (100) on radio signals received from another base station transceiver and the configuration information comprises bias information for biasing the signal quality measurement, the bias information is based on the sensitivity information.
Abstract:
Embodiments of the claimed subject matter provide a method and apparatus for translating testing requirements between different reference points. Some embodiments of the method include generating mapping information that relates at least one first requirement associated with an active antenna array to at least one second requirement associated with the active antenna array. The first requirements are associated with a first reference point and the second requirements are associated with a second reference point that differs from the first reference point. Some embodiments of the method also include storing the mapping information in a non-transitory computer-readable storage media.
Abstract:
According an embodiment the method includes sending a RRC connection reconfiguration message to a user equipment, the RRC connection reconfiguration message including at least one energy sensing threshold corresponding to at least one unlicensed channel; and receiving a Layer 1 channel indication message via a licensed channel from the user equipment, the Layer 1 channel indication message indicating whether an unlicensed channel is free.
Abstract:
Method and apparatus for supporting a partial sub-frame data transmission in LTE systems. The transmitting device performs a channel assessment in a previous sub-frame in an unlicensed carrier (S110). After a successful channel assessment, the transmitting device starts a data transmission (S120). The transmitting device transmits a control message for indicating the data transmission in (E)PDCCH (S140). The control message may include the starting time of the data transmission and/or at least one transmission characteristic in the previous sub-frame. The transmission device may transmit an initial control message for indicating a potential data transmission being started in the sub-frame in which the initial control message is transmitting. Method and apparatus enable (E)CCA to take place at any time, and data transmission to start earlier than the next sub-frame boundary after a successful completion of (E)CCA, thus improving the data transmission capacity, especially in circumstances when the maximum length of transmission is constrained.
Abstract:
The invention provides a method for use in a user equipment configured with EPDCCH, the method comprising: measuring downlink radio link quality corresponding to UE-specific search space in EPDCCH; and sending an EPDCCH CQI to a serving base station to indicate the measured downlink radio link quality. The invention further provides a method for use in a user equipment configured with EPDCCH, the method comprising: measuring downlink radio link quality corresponding to UE-specific search space in EPDCCH; and sending an EPDCCH failure indicator to a serving base station when the measured downlink radio link quality does not meet a predetermined condition. The invention further provides a method for use in a user equipment configured with EPDCCH, the method comprising: measuring downlink radio link quality corresponding to common search space in PDCCH on frames where EPDCCH is configured; and triggering radio link failure when the measured downlink radio link quality does not meet a predetermined condition.