摘要:
A process for regenerating a supported noble metal catalyst and also a process for catalytic treatment of wastewater containing, in particular, organohalogen contaminants, in which the process for regenerating the catalyst is a part of the overall wastewater treatment process.
摘要:
Aluminum parts, such as heat exchangers, with improved resistance towards corrosion caused by contact with stationary water or aqueous compositions can be obtained by addition of Li compounds to the flux used for brazing such parts. LiF and especially Li fluoroaluminates are very suitable. Another aspect of the invention concerns fluxes containing Li salts and their use for brazing of aluminum parts.
摘要:
Aluminium and titanium parts can be joined to each other by brazing in the presence of an alkali metal fluoroaluminate in a protective gas atmosphere which comprises argon. According to the process, the assemblies of aluminium and titanium, joint by brazing, can be used for example in or as chemical apparatus, as parts for cars, boats, space transportation systems, or airplanes, or for manufacturing heat exchangers.
摘要:
The invention relates to a method for removing chlorate ions from solutions by means of catalytic treatment in the presence of hydrogen. According to the invention a rhodium and/or platinum catalyst is used. The choice of catalyst carrier depends on the amount of coadsorbents contained in the solution. The carrier material, which may be oxidic or non-oxidic, should also be easily wettable.
摘要:
Aluminum parts, e.g., heat exchangers, with improved resistance towards corrosion caused by contact with stationary water or aqueous compositions such as cooling water can be obtained by addition of Li compounds in specific amounts to the flux used for brazing the parts. LiF and especially Li fluoroaluminates are very suitable. The flux and the Li salt can be dispersed in water or an aqueous composition separately.
摘要:
Aqueous flux preparations with increased dynamic viscosity are provided. In the flux preparations, irreversibly dehydrated K2AlF5 (also denoted as orthorhombic K2AlF5 or phase II salt) provides for an increase of the dynamic viscosity if the aqueous flux preparations are aged, i.e., a contact between water comprised in the preparation and irreversibly dehydrated K2AlF5 is maintained for a certain time span, preferably for at least 12 minutes. The higher viscosity improves the brazing process, for example because less flux preparation drops off from the parts to be brazed.
摘要:
A flux based on alkali fluoroaluminate is described which is highly suitable for dry application (“dry fluxing”). This is a flux which is free of fine-grained fraction, which is defined by a range of grain-size distribution.
摘要:
A flux based on alkali fluoroaluminate is described which is highly suitable for dry application (“dry fluxing”). This is a flux which is free of fine-grained fraction, which is defined by a range of grain-size distribution.
摘要:
Aluminum parts, e.g., heat exchangers, with improved resistance towards corrosion caused by contact with stationary water or aqueous compositions such as cooling water can be obtained by addition of Li compounds in specific amounts to the flux used for brazing the parts. LiF and especially Li fluoroaluminates are very suitable. The flux and the Li salt can be dispersed in water or an aqueous composition separately.
摘要:
Aluminum parts, such as heat exchangers, with improved resistance towards corrosion caused by contact with stationary water or aqueous compositions can be obtained by addition of Li compounds to the flux used for brazing such parts. LiF and especially Li fluoroaluminates are very suitable. Another aspect of the invention concerns fluxes containing Li salts and their use for brazing of aluminum parts.