Abstract:
Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.
Abstract:
Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.
Abstract:
A server determines that communications with a first user device are to be made in a voice call mode. The server receives, from a second user device, a first text data packet corresponding to text communications with the first user device, converts the first text data packet into a first voice data packet, and sends, via a wireless network, the first voice data packet to the first user device.
Abstract:
Methods and systems for prioritizing application data in a wireless user device are disclosed. A user device receives, at an application transport bearer (ATB) entity of a protocol layer of a network interface of a user device, at least a portion of a data packet originating from an application identified for prioritized data transfer on the user device. Then, the ATB entity of the user device schedules the data packet ahead of any data packets processed at any network-established data radio bearer (DRB) entities on the same protocol layer as the ATB entity. The ATB entity of the user device is also configured to operate on a protocol layer of a subset of protocol layers on the user device and is configured by the user device with a higher priority parameter than any of the network-established DRB entities on the same protocol layer as the ATB entity.
Abstract:
A user device receives network information for a future destination of the user device. The user device stores the network information for the future destination in a local store of the user device. Responsive to the user device starting up, the user device searches for an available network using the network information in the local store of the user device, wherein searching for the available network excludes searching for a last registered network.
Abstract:
Methods and systems for prioritizing application data in a wireless user device are disclosed. A user device receives, at an application transport bearer (ATB) entity of a protocol layer of a network interface of a user device, at least a portion of a data packet originating from an application identified for prioritized data transfer on the user device. Then, the ATB entity of the user device schedules the data packet ahead of any data packets processed at any network-established data radio bearer (DRB) entities on the same protocol layer as the ATB entity. The ATB entity of the user device is also configured to operate on a protocol layer of a subset of protocol layers on the user device and is configured by the user device with a higher priority parameter than any of the network-established DRB entities on the same protocol layer as the ATB entity.
Abstract:
Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.
Abstract:
A user device receives network information for a future destination of the user device. The user device stores the network information for the future destination in a local store of the user device. Responsive to the user device starting up, the user device searches for an available network using the network information in the local store of the user device, wherein searching for the available network excludes searching for a last registered network.
Abstract:
Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.
Abstract:
Topics of potential interest to a user, useful for purposes such as targeted advertising and product recommendations, can be extracted from voice content produced by a user. A computing device can capture voice content, such as when a user speaks into or near the device. One or more sniffer algorithms or processes can attempt to identify trigger words in the voice content, which can indicate a level of interest of the user. For each identified potential trigger word, the device can capture adjacent audio that can be analyzed, on the device or remotely, to attempt to determine one or more keywords associated with that trigger word. The identified keywords can be stored and/or transmitted to an appropriate location accessible to entities such as advertisers or content providers who can use the keywords to attempt to select or customize content that is likely relevant to the user.