Abstract:
A system, method, and computer program product are provided for limiting an impact of at least one internal network entity on a network function virtualization (NFV) based communication network hosting the network entity, the method including: providing a container including at least one borderline gateway, providing within the container at least one of internal network entity, where the internal network entity includes a software module, a virtual network function (VNF), and a VNF instance, and assigning the borderline gateway at least one protective limit, where NFV-based network includes at least one external network entity, the external network entity is external to the container, where the at least one internal network entity communicates with any of the external network entities only via the at least one borderline gateway, and where the borderline gateway is operative to use the protective limit to limit the impact on the NFV-based network.
Abstract:
According to one aspect of the present invention there is provided a system, method, and computer program product for recovering from a network failure in a communication network using network function virtualization (NFV-based network), the method including: selecting a first network component of the NFV-based network, detecting at least one probable failure of the first network component, identifying at least one virtual network function (VNF) instance using the first network component, selecting a second network component to be used by same VNF for replacing the VNF instance in the first network component when the first network component is faulty, and securing at least one resource of the second network component for the VNF.
Abstract:
A system, method, and computer program product are provided for providing security in a Network Function Virtualization based (NFV-based) communication network. In operation, a security attack is identified. Additionally, a first hardware unit attacked by the security attack is identified. Further, a hardware unit in which to initiate a security defense software program is identified. Moreover, the security defense software program is initiated in the identified hardware unit.
Abstract:
A system, method, and computer program product are provided for preserving service continuity in a Network Function Virtualization based (NFV-based) communication network. In use, a first virtual network function (VNF) instance associated with a first VNF in a first hardware unit in a Network Function Virtualization based (NFV-based) communication network is identified. Additionally, a second VNF instance on a second hardware unit is instantiated, the second VNF instance being compatible with the first VNF instance. Further, communication directed to the first VNF instance is diverted to the second VNF instance on the second hardware unit, in response to initiating the second VNF instance on a second hardware unit.
Abstract:
According to one aspect of the present invention there is provided a system, method, and computer program product for deploying a plurality of virtual network function (VNF) instances in a communication network using network function virtualization (NFV-based network), where the network includes a plurality of computing-related units and communication links in-between, the method including: determining at least one performance value for at least one of the computing-related units and communication links, determining at least one performance requirement for at least one of the VNF instances, and associating the at least one VNF instance with at least one of the computing-related units and the communication links according to the at least one performance requirement and the at least one performance value.
Abstract:
A system, method, and computer program product are provided for managing hierarchy and optimization in network function virtualization based networks. In use, a first hardware unit of a plurality of hardware units associated with a network function virtualization (NFV) based communication network is identified, the first hardware unit being identified based on a first load characteristic associated with the first hardware unit. Further, a first virtual network function (VNF) instance associated with the first hardware unit is identified, the first VNF instance being associated with usage of at least one service. Additionally, at least one traffic route associated with the first VNF instance is identified, the at least one traffic route being associated with usage of the at least one service. Furthermore, a second hardware unit for handling at least a portion of a workload associated with the at least one service is identified, the second hardware unit being identified based on a second load characteristic associated with the second hardware unit, and the second hardware unit being capable of utilizing the at least one traffic route. Still yet, a second VNF instance is initiated in the second hardware unit. Moreover, at least part of the at least one service is migrated from the first VNF instance to the second VNF instance without disrupting the service.
Abstract:
A system, method, and computer program product are provided for planning distribution of one or more network resources in a Network Function Virtualization based (NFV-based) communication network. In use, at least one Virtual Network Function (VNF) instance of a VNF is migrated between processing units in a NFV-based communication network, according to a change of load. Further, a lack of at least one network resource associated with at least one network node is reported for planning distribution of one or more network resources in the NFV-based communication network, the missing network resource at least partially limiting migration of one or more VNF instances.
Abstract:
According to one aspect of the present invention there is provided a system, method, and computer program product for communicating information in a communication network using network function virtualization (NFV-based communication network), the method including: sending a communication from a first entity of the NFV-based communication network, the first entity being a sender, and receiving the communication by a second entity of the NFV-based communication network, the second entity being a receiver, where the communication includes: an identification of the sender of the communication, and an identification of the receiver of the communication, an identification of a function associated with the NFV-based communication network, and an authorization associating one or more of the sender and the receiver with the function.
Abstract:
A system, method, and computer program product are provided for resource conversion in network function virtualization based networks. In use, a first resource of a first type is identified in a first hardware unit, the first resource at least potentially having insufficient availability and being associated with a Network Function Virtualization based (NFV-based) communication network. Additionally, a second resource of a second type is identified, the second resource being associated with the first hardware unit, the second resource being identified as sufficiently available. Further, a third resource of the first type is identified, the third resource being associated with a second hardware unit, the second hardware unit being associated with the second resource, the third resource being identified as sufficiently available.
Abstract:
A system, method, and computer program product are provided for performing preventative maintenance in a Network Function Virtualization based (NFV-based) communication network. In use, a first potential fault is identified in a first resource in an NFV-based communication network. Additionally, a first time for maintaining the first resource is identified to prevent an occurrence of the first potential fault. Further, a second resource is identified for replacing the first resource during the first time.