Abstract:
A method for imaging a surface, including scanning a first region of the surface with a primary charged particle beam at a first scan rate so as to generate a first secondary charged particle beam from the first region, and scanning a second region of the surface with the primary charged particle beam at a second scan rate faster than the first scan rate so as to generate a second secondary charged particle beam from the second region. The method also includes receiving the first secondary charged particle beam and the second secondary charged particle beam at a detector configured to generate a signal in response to the beams, and forming an image of the first and the second regions in response to the signal.
Abstract:
A method for imaging a surface, including scanning a first region of the surface with a primary charged particle beam at a first scan rate so as to generate a first secondary charged particle beam from the first region, and scanning a second region of the surface with the primary charged particle beam at a second scan rate faster than the first scan rate so as to generate a second secondary charged particle beam from the second region. The method also includes receiving the first secondary charged particle beam and the second secondary charged particle beam at a detector configured to generate a signal in response to the beams, and forming an image of the first and the second regions in response to the signal.
Abstract:
A multi beam inspection method and system. The inspection system includes: (i) a beam array generator adapted to generate an array of beams characterized by a beam array axis; and (ii) at least one mechanism adapted to position the object under the array of beams such that at least two beams that are positioned along a beam array axis scan substantially simultaneously at least two regions of interest of the object, wherein the first axis is oriented in relation to the beam array axis.
Abstract:
A multi beam inspection method and system. The inspection system includes: (i) a beam array generator adapted to generate an array of beams characterized by a beam array axis; and (ii) at least one mechanism adapted to position the object under the array of beams such that at least two beams that are positioned along a beam array axis scan substantially simultaneously at least two regions of interest of the object, wherein the first axis is oriented in relation to the beam array axis.
Abstract:
An apparatus and method for scanning a pattern. The method includes: (i) directing a charged particle beam such as to interact with the pattern along a first scan path, and (ii) directing a beam such as to interact with the pattern along a second scan path. The pattern changes one of its characteristics as a result of an interaction with the beam. The distance between the first and the second scan paths may be bigger than the diameter of the charged electron beam. Each of the first and second scan paths may include a plurality of consecutive samples and the distance between the first and second scan paths may be bigger than a distance between adjacent samples. The location of scan paths may be changed between measurements and especially between measurement sessions. The charged particle beam may have an ellipsoid cross section.
Abstract:
A method for focusing a charged particle beam, the method includes: (a) altering a focal point of a charged particle beam according to a first focal pattern while scanning a first area of a sample and collecting a first set of detection signals; (b) altering a focal point of a charged particle beam according to a second focal pattern while scanning a second area that is ideally identical to the first area and collecting a second set of detection signals; and (c) processing the first and second set of detection signals to determine a focal characteristic; whereas the first focal pattern and the second focal pattern differ by the location of an optimal focal point.
Abstract:
An apparatus and method for scanning a pattern. The method includes: (i) directing a charged particle beam such as to interact with the pattern along a first scan path, and (ii) directing a beam such as to interact with the pattern along a second scan path. The pattern changes one of its characteristics as a result of an interaction with the beam. The distance between the first and the second scan paths may be bigger than the diameter of the charged electron beam. Each of the first and second scan paths may include a plurality of consecutive samples and the distance between the first and second scan paths may be bigger than a distance between adjacent samples. The location of scan paths may be changed between measurements and especially between measurement sessions. The charged particle beam may have an ellipsoid cross section.
Abstract:
An integrated VMM (vector-matrix multiplier) module, including an electro-optical VMM component that multiplies an input vector by a matrix to produce an output vector; and an electronic VPU (vector processing unit) that processes at least one of the input and output vectors. Various error reducing mechanisms are also discussed.
Abstract:
A method for focusing a charged particle beam, the method includes: (a) altering a focal point of a charged particle beam according to a first focal pattern while scanning a first area of a sample and collecting a first set of detection signals; (b) altering a focal point of a charged particle bean according to a second focal pattern while scanning a second area that is ideally identical to the first area and collecting a second set of detection signals; and (c) processing the first and second set of detection signals to determine a focal characteristic; whereas the first focal pattern and the second focal pattern differ by the location of an optimal focal point.
Abstract:
A method for focusing a charged particle beam, the method including: (a) altering a focal point of a charged particle beam according to a first focal pattern while scanning a first area of a sample and collecting a first set of detection signals; (b) altering a focal point of a charged particle beam according to a second focal pattern while scanning a second area that is ideally identical to the first area and collecting a second set of detection signals; and (c) processing the first and second set of detection signals to determine a focal characteristic; wherein the first focal pattern and the second focal pattern differ by the location of an optimal focal point.