摘要:
Methods of fabricating a glass ribbon comprise the step of bending a glass ribbon in a cutting zone to provide a bent target segment with a bent orientation in the cutting zone. The methods further include the step of severing at least one of the edge portions from the central portion of the bent target segment within the cutting zone. Further methods are provided including the step of bending a glass ribbon in a bending zone downstream from a downward zone, wherein the glass ribbon includes an upwardly concave surface through the bending zone. The methods further include the step of severing at least one of the edge portions from the central portion of a target segment within the bending zone.
摘要:
Methods of fabricating a glass ribbon comprise the step of bending a glass ribbon in a cutting zone to provide a bent target segment with a bent orientation in the cutting zone. The methods further include the step of severing at least one of the edge portions from the central portion of the bent target segment within the cutting zone. Further methods are provided including the step of bending a glass ribbon in a bending zone downstream from a downward zone, wherein the glass ribbon includes an upwardly concave surface through the bending zone. The methods further include the step of severing at least one of the edge portions from the central portion of a target segment within the bending zone.
摘要:
A non-contact dancer mechanism for conveying a web of brittle material includes a guide rail and a variable position web support plenum adjustably positioned on the guide rail. The variable position web support plenum may include an arcuate outer surface with a plurality of fluid vents for emitting a fluid to support the web of brittle material over and spaced apart from the arcuate outer surface thereby preventing mechanical contact and damage to the web of brittle material. A support plenum counterbalance may be mechanically coupled to the variable position web support plenum, wherein the support plenum counterbalance supports at least a portion of the weight of the variable position web support plenum on the guide rail. Apparatuses incorporating the non-contact dancer mechanism and methods for using the non-contact dancer mechanism for handling continuous webs of brittle material are also disclosed.
摘要:
A substrate (100) comprising a sheet of either a glass, a glass ceramic, or a ceramic and having increased edge strength. A polymeric edge coating (120) prevents creation of strength limiting defects along the edges of the substrate and protects the bend strength of the edges. The substrate may also have at least two parallel high strength edges (110, 112) and an edge coating (120) of a polymeric material covering at least a portion of each of the high strength edges to preserve the high strength edges from the introduction of defects and damage to the edges. Each of the two parallel high strength edges has a bend strength that is capable of less than about 2% failure probability at a stress level of 200 MPa over a test length of 50 mm. A method of making the substrate is also provided.
摘要:
A sintered electrolyte sheet comprising: a body of no more than 45 μm thick and laser machined features with at least one edge surface having at least 10% ablation. A method of micromachining the electrolyte sheet includes the steps of: (i) supporting a sintered electrolyte sheet; (ii) micromachining said sheet with a laser, wherein said laser has a wavelength of less than 2 μm, fluence of less than 200 Joules/cm2, repettion rate (RR) of between 30 Hz and 1 MHz, and cutting speed of preferably over 30 mm/sec.
摘要:
A method of separating a sheet of coated brittle material comprises the steps of providing a sheet of layered brittle material comprising a brittle layer and a coating material adhered to a surface of the brittle layer and applying a laser along a separation line in the sheet, thereby cutting the coating material and separating the brittle layer by inducing a stress fracture therein.
摘要:
A non-contact glass shearing device and a method are described herein that vertically scribes or cuts a downward moving glass sheet to remove outer edges (beads) from the downward moving glass sheet. In addition, the non-contact glass shearing device and method can horizontally scribe or cut the downward moving glass sheet (without the outer edges) so that it can be separated into distinct glass sheets.
摘要:
A sintered electrolyte sheet comprising: a body of no more than 45 μm thick and laser machined features with at least one edge surface having at least 10% ablation. A method of micromachining the electrolyte sheet includes the steps of: (i) supporting a sintered electrolyte sheet; (ii) micromachining said sheet with a laser, wherein said laser has a wavelength of less than 2 μm, fluence of less than 200 Joules/cm2, repetition rate (RR) of between 30 Hz and 1 MHz, and cutting speed of preferably over 30 mm/sec.
摘要:
A substrate (100) comprising a sheet of either a glass, a glass ceramic, or a ceramic and having increased edge strength. A polymeric edge coating (120) prevents creation of strength limiting defects along the edges of the substrate and protects the bend strength of the edges. The substrate may also have at least two parallel high strength edges (110, 112) and an edge coating (120) of a polymeric material covering at least a portion of each of the high strength edges to preserve the high strength edges from the introduction of defects and damage to the edges. Each of the two parallel high strength edges has a bend strength that is capable of less than about 2% failure probability at a stress level of 200 MPa over a test length of 50 mm. A method of making the substrate is also provided.
摘要:
A method for cutting a sheet of material having a thickness of at most 400 μm using an electromagnetic wave beam (EWB) such as a laser. The method comprises forming a surface initiation defect and irradiating the sheet along a predetermined path within a short distance from the initiation defect a scanning EWB, such that the sheet is heated and cooled to allow for the propagation of the initiation defect into the predetermined path, and further along the predetermined path to result in a separation of the sheet along the predetermined irradiation path. This method can be advantageously used to cut glass sheets having a thin thickness to result in high-quality edge substantially free of major defects carried over from the initiation defect.