摘要:
A spectral purity filter is configured to transmit extreme ultraviolet (EUV) radiation and deflect or absorb non-EUV secondary radiation. In an embodiment, the spectral purity filter includes a body of material highly transmissive of EUV radiation and a layer of material highly reflective of non-EUV secondary radiation located on a radiation incident side of the body. In an embodiment, the spectral purity filter includes a body of material highly transmissive of EUV radiation and a layer of high emissivity material on an end of the body.
摘要:
A spectral purity filter is configured to transmit extreme ultraviolet (EUV) radiation and deflect or absorb non-EUV secondary radiation. In an embodiment, the spectral purity filter includes a body of material highly transmissive of EUV radiation and a layer of material highly reflective of non-EUV secondary radiation located on a radiation incident side of the body. In an embodiment, the spectral purity filter includes a body of material highly transmissive of EUV radiation and a layer of high emissivity material on an end of the body.
摘要:
A lithographic apparatus includes an optical element that includes an oriented carbon nanotube sheet. The optical element has an element thickness in the range of about 20-500 nm and has a transmission for EUV radiation having a wavelength in the range of about 1-20 nm of at least about 20% under perpendicular irradiation with the EUV radiation.
摘要:
A multilayer mirror is constructed and arranged to reflect radiation haying a wavelength in the range of 2-8 nm. The multilayer mirror has alternating layers selected from the group consisting of: Cr and Sc layers, Cr and C layers, C and B4C layers, U and B4C layers, Th and B4C layers, C and B9C layers, La and B9C layers, U and B9C layers, Th and B9C layers, La and B layers, C and B layers. U and B layers, and Th and B layers.
摘要:
Embodiments of the invention relate to a mirror (30). The mirror includes a mirroring surface and a profiled coating layer (32a) having an outer surface, wherein one or more wedged elements are formed by the outer surface with respect to the mirroring surface, and wherein the one or more wedged elements having a wedge angle (ø) in a range of approximately 10-200 mrad. The profiled coating layer may have a curved outer surface. The profiled coating layer may be formed from at least one of the following materials: Be, B, C, P, K, Ca, Sc, Br, Rb, Sr, Y, Zr, Ru, Nb, Mo, Ba, La, Ce, Pr, Pa and U.
摘要:
Embodiments of the invention relate to a mirror (30). The mirror includes a mirroring surface and a profiled coating layer (32a) having an outer surface, wherein one or more wedged elements are formed by the outer surface with respect to the mirroring surface, and wherein the one or more wedged elements having a wedge angle (ø) in a range of approximately 10-200 mrad. The profiled coating layer may have a curved outer surface. The profiled coating layer may be formed from at least one of the following materials: Be, B, C, P, K, Ca, Sc, Br, Rb, Sr, Y, Zr, Ru, Nb, Mo, Ba, La, Ce, Pr, Pa and U.
摘要:
A lithographic apparatus includes an optical element that includes an oriented carbon nanotube sheet. The optical element has an element thickness in the range of about 20-500 nm and has a transmission for EUV radiation having a wavelength in the range of about 1-20 nm of at least about 20% under perpendicular irradiation with the EUV radiation.
摘要:
A lithographic apparatus includes a radiation system including a radiation source for the production of a radiation beam, and a contaminant trap arranged in a path of the radiation beam. The contaminant trap includes a plurality of foils or plates defining channels that are arranged substantially parallel to the direction of propagation of said radiation beam. The foils or plates can be oriented substantially radially with respect to an optical axis of the radiation beam. The contaminant trap can be provided with a gas injector which is configured to inject gas at least at two different positions directly into at least one of the channels of the contaminant trap.
摘要:
A multilayer mirror to reflect radiation having a wavelength in the range of 2-8 nm has alternating layers. The alternating layers include a first layer and a second layer. The first and second layers are selected from the group consisting of: U and B4C layers, Th and B4C layers, La and B9C layers, La and B4C layers, U and B9C layers, Th and B9C layers, La and B layers, U and B layers, C and B layers, Th and B layers, U compound and B4C layers, Th compound and B4C layers, La compound and B9C layers, La compound and B4C layers, U compound and a B9C layers, Th compound and a B9C layers, La compound and a B layers, U compound and B layers, and Th compound and a B layers. An interlayer is disposed between at least one of the first layers and the second layer.
摘要:
A multilayer mirror for use in device lithography is configured to reflect and/or pattern radiation having a wavelength in the range of about 6.4 nm to about 7.2 nm. The multilayer mirror has a plurality of alternating layers of materials. The plurality of alternating layers of materials include first layers of materials and second layers of materials. The second layers have a higher refractive index for the radiation than the first layers. The materials of the first layers and the materials of the second layers are mutually chemically unreactive at an interface therebetween at temperatures less than 300° C. This may allow the mirrors to have a narrow boundary region of intermingled materials from alternating layers between the layers, for example of 0.5 nm or less in width, which may improve sharpness of the boundary region and improve reflectivity.