摘要:
A lithographic apparatus includes an optical element that includes an oriented carbon nanotube sheet. The optical element has an element thickness in the range of about 20-500 nm and has a transmission for EUV radiation having a wavelength in the range of about 1-20 nm of at least about 20% under perpendicular irradiation with the EUV radiation.
摘要:
A multilayer mirror is constructed and arranged to reflect radiation haying a wavelength in the range of 2-8 nm. The multilayer mirror has alternating layers selected from the group consisting of: Cr and Sc layers, Cr and C layers, C and B4C layers, U and B4C layers, Th and B4C layers, C and B9C layers, La and B9C layers, U and B9C layers, Th and B9C layers, La and B layers, C and B layers. U and B layers, and Th and B layers.
摘要:
A multilayer mirror for use in device lithography is configured to reflect and/or pattern radiation having a wavelength in the range of about 6.4 nm to about 7.2 nm. The multilayer mirror has a plurality of alternating layers of materials. The plurality of alternating layers of materials include first layers of materials and second layers of materials. The second layers have a higher refractive index for the radiation than the first layers. The materials of the first layers and the materials of the second layers are mutually chemically unreactive at an interface therebetween at temperatures less than 300° C. This may allow the mirrors to have a narrow boundary region of intermingled materials from alternating layers between the layers, for example of 0.5 nm or less in width, which may improve sharpness of the boundary region and improve reflectivity.
摘要:
A multilayer mirror to reflect radiation having a wavelength in the range of 2-8 nm has alternating layers. The alternating layers include a first layer and a second layer. The first and second layers are selected from the group consisting of: U and B4C layers, Th and B4C layers, La and B9C layers, La and B4C layers, U and B9C layers, Th and B9C layers, La and B layers, U and B layers, C and B layers, Th and B layers, U compound and B4C layers, Th compound and B4C layers, La compound and B9C layers, La compound and B4C layers, U compound and a B9C layers, Th compound and a B9C layers, La compound and a B layers, U compound and B layers, and Th compound and a B layers. An interlayer is disposed between at least one of the first layers and the second layer.
摘要:
A multilayer mirror to reflect radiation having a wavelength in the range of 2-8 nm has alternating layers. The alternating layers include a first layer and a second layer. The first and second layers are selected from the group consisting of: U and B4C layers, Th and B4C layers, La and B9C layers, La and B4C layers, U and B9C layers, Th and B9C layers, La and B layers, U and B layers, C and B layers, Th and B layers, U compound and B4C layers, Th compound and B4C layers, La compound and B9C layers, La compound and B4C layers, U compound and a B9C layers, Th compound and a B9C layers, La compound and a B layers, U compound and B layers, and Th compound and a B layers. An interlayer is disposed between at least one of the first layers and the second layer.
摘要:
A multilayer mirror for use in device lithography is configured to reflect and/or pattern radiation having a wavelength in the range of about 6.4 nm to about 7.2 nm. The multilayer mirror has a plurality of alternating layers of materials. The plurality of alternating layers of materials include first layers of materials and second layers of materials. The second layers have a higher refractive index for the radiation than the first layers. The materials of the first layers and the materials of the second layers are mutually chemically unreactive at an interface therebetween at temperatures less than 300° C. This may allow the mirrors to have a narrow boundary region of intermingled materials from alternating layers between the layers, for example of 0.5 nm or less in width, which may improve sharpness of the boundary region and improve reflectivity.
摘要:
A transmissive spectral purity filter is configured to transmit extreme ultraviolet radiation. The spectral purity filter includes a filter part having a plurality of apertures to transmit extreme ultraviolet radiation and to suppress transmission of a second type of radiation. The apertures may be manufactured in carrier material such as silicon by an anisotropic etching process and topped with a reflective layer such as Mo metal, Ru metal, TiN or RuO. A diffusion barrier layer such as silicon nitride Si3N4, or silicon dioxide SiO2 is provided between the metal and the semiconductor to prevent diffusion and silicidation of the metal at elevated temperatures. The diffusion barrier layer may also serve as a hydrogen-resistant layer on parts of the semiconductor which are not beneath the reflective layer, and/or enhance emissivity for removal of heat from the structure.
摘要翻译:透射光谱纯度滤光器被配置为透射极紫外辐射。 光谱纯度滤光器包括具有多个孔以便透射极紫外辐射并抑制第二类辐射的透射的滤光器部分。 孔可以通过各向异性蚀刻工艺在诸如硅的载体材料中制成,并且覆盖有诸如Mo金属,Ru金属,TiN或RuO的反射层。 在金属和半导体之间设置有诸如氮化硅Si 3 N 4或二氧化硅SiO 2的扩散阻挡层,以防止金属在升高的温度下扩散和硅化。 扩散阻挡层还可以在半导体的不在反射层下面的部分上用作耐氢层,和/或增加用于从结构去除热量的发射率。
摘要:
An imprint lithography method is disclosed that includes, after imprinting an imprint lithography template into a layer of imprintable medium to form a pattern in that imprintable medium and fixing that pattern to form a patterned layer of imprintable medium, adding etch resistant material (i.e. a hard mask) to a part of the patterned layer of imprintable medium to reduce a difference between an intended topography and an actual topography of that part of the patterned layer of imprintable medium.
摘要:
An imprint lithography method is disclosed that includes, after imprinting an imprint lithography template into a layer of imprintable medium to form a pattern in that imprintable medium and fixing that pattern to form a patterned layer of imprintable medium, adding etch resistant material (i.e. a hard mask) to a part of the patterned layer of imprintable medium to reduce a difference between an intended topography and an actual topography of that part of the patterned layer of imprintable medium.
摘要:
An EUV radiation source comprising a fuel supply (200) configured to deliver a droplet of fuel to a plasma generation location (201), a first laser beam source configured to provide a first beam of laser radiation (205) incident upon the fuel droplet at the plasma generation location and thereby vaporizes the fuel droplet, and a second laser beam source configured to subsequently provide a second beam of laser radiation (205) at the plasma generation location, the second beam of laser radiation being configured to vaporize debris particles (252) arising from incomplete vaporization of the fuel droplet.