摘要:
A precious metal sputter target has a composition selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, osmium and single-phase alloys thereof. The sputter target's grain structure is at least about 99 percent recrystallized and has a grain size of less than about 200 μm for improving sputter uniformity. The cryogenic method for producing these sputter targets is also effective for improving sputter performance for silver an gold sputter targets.
摘要:
A precious metal sputter target has a composition selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, osmium and single-phase alloys thereof. The sputter target's grain structure is at least about 99 percent recrystallized and has a grain size of less than about 200 μm for improving sputter uniformity. The cryogenic method for producing these sputter targets is also effective for improving sputter performance for silver and gold sputter targets.
摘要:
A precious metal sputter target has a composition selected from the group consisting of platinum, palladium, rhodium, iridium, ruthenium, osmium and single-phase alloys thereof. The sputter target's grain structure is at least about 99 percent recrystallized and has a grain size of less than about 200 μm for improving sputter uniformity. The cryogenic method for producing these sputter targets is also effective for improving sputter performance-for silver an gold sputter targets.
摘要:
The present invention relates to a method and apparatus of forming a sputter target assembly having a controlled solder thickness. In particular, the method includes the introduction of a bonding foil, between the backing plate and the sputter target, wherein the bonding foil is an ignitable heterogeneous stratified structure for the propagation of an exothermic reaction.
摘要:
The present invention relates to a method and apparatus of forming a sputter target assembly having a controlled solder thickness. In particular, the method includes the introduction of a bonding foil, between the backing plate and the sputter target, wherein the bonding foil is an ignitable heterogeneous stratified structure for the propagation of an exothermic reaction.
摘要:
The present invention relates to a method and apparatus of forming a sputter target assembly having a controlled solder thickness. In particular, the method includes the introduction of a bonding foil, between the backing plate and the sputter target, wherein the bonding foil is an ignitable heterogeneous stratified structure for the propagation of an exothermic reaction.
摘要:
The present invention relates to a method and apparatus of forming a sputter target assembly having a controlled solder thickness. In particular, the method includes the introduction of a bonding foil, between the backing plate and the sputter target, wherein the bonding foil is an ignitable heterogeneous stratified structure for the propagation of an exothermic reaction.
摘要:
The disclosed embodiments provide a system that facilitates driving a display in a computer system. During operation, the system receives an input video stream from a graphics source. The system directs the input video stream through a front memory buffer and a back memory buffer to produce an output video stream. While directing the input video stream through the set of memory buffers, the system writes a video frame from the input video stream into the back buffer, and concurrently drives the output video stream from a preceding video frame in the front buffer. When the writing of the video frame completes, the system switches buffers so that the back buffer becomes the front buffer, which drives the output video stream, and the front buffer becomes either a spare buffer or the back buffer, which receives a subsequent frame from the input video stream.
摘要:
The disclosed embodiments provide a system that facilitates driving a display in a computer system. During operation, the system receives an input video stream from a graphics source, wherein the input video stream comprises a sequence of video frames. Next, the system directs the input video stream through a set of two or more memory buffers including a front buffer and a back buffer to produce an output video stream, which is used to drive the display. While directing the input video stream through the set of memory buffers, the system writes a video frame from the input video stream into the back buffer, and concurrently drives the output video stream from a preceding video frame in the front buffer. When the writing of the video frame completes, the system switches buffers so that the back buffer becomes the front buffer, which drives the output video stream, and the front buffer becomes either a spare buffer or the back buffer, which receives a subsequent frame from the input video stream.