摘要:
A method is disclosed for forming a tungsten oxide film on a substrate by applying an alkyl amine tungstate compound thereon and removing at least a portion of the alkyl amine tungstate compound to form a tungsten oxide film.In a preferred embodiment, a solution of alkyl amine tungstate compound is formed in a solvent to uniformly apply the alkyl amine tungstate compound; the solvent is removed by evaporation thereby forming a deposit; the deposit is heated for a time and at a temperature sufficient to at least partially pyrolyze the alkyl amine tungstate compound.The alkyl amine tungstate compound desirably may be selected from the group consisting of bis (di-n-octylammonium) tetratungstate, and di (n-octadecylammonium) tetratungstate. Preferably, bis (di-n-octylammonium) tetratungstate is used.The invention also provides tungsten oxide films which include suboxides of tungsten oxides (WO.sub.3); which have an average ratio of oxygen atoms to tungsten atoms equal to or less than 3:1; which are denser than films produced from currently known MOD precursor compounds; which have a color gradient, that is, regions of different color; and wherein the regions of color are electrochromic.
摘要:
Systems and methods for determining a temperature of a ferroelectric sensor are provided. The ferroelectric sensor has operational characteristics defined by a polarization versus voltage hysteresis loop. In one exemplary embodiment, the method includes applying a symmetrical periodic voltage waveform to the ferroelectric sensor so as to induce the ferroelectric sensor to traverse the polarization versus voltage hysteresis loop. The method further includes monitoring voltages across the ferroelectric sensor and polarization states of the ferroelectric sensor over a first time interval to determine a first zero field polarization state and a first coercive field voltage. The method further includes determining a first temperature value indicative of the temperature of the ferroelectric sensor based on the first coercive field voltage.
摘要:
Patterned films of superconducting materials are formed using focused beam techniques, such as electron beam, ion beam, and laser beam techniques. A solution comprising the neodecanoates of yttrium, barium, and copper is formed which is soluble in an organic solvent. The solution is spun onto an appropriate substrate. The solution is dried and subsequently selectively exposed using focused beam techniques, so that the exposed regions are no longer soluble in the organic solvent. The solution is immersed in the organic solvent, so that the only the exposed, insoluble regions remain on the substrate. The solution is then heated at a temperature sufficient to decompose the neodecanoates, about 500.degree. C., and then heated again, preferably using rapid thermal annealing techniques, to promote recrystallization and grain growth of the remaining metal oxides. The resulting patterned film exhibits superconductive characteristics.
摘要:
A metal sulfide thin film, such as a zinc sulfide thin film, is formed by thermal decomposition of a metal mercaptide or other suitable metallo-organic compound having a metal-to-sulfur bond. To produce the film, the metallo-organic compound is applied to a substrate in a solution that also contains a sulfur to facilitate dissolution of the compound and enhance stability of the solution. It is also found that sulfur addition reduces carbon contamination of the product sulfide thin film.
摘要:
Barium-strontium titanate ferroelectric materials and AFe.sub.2 O.sub.4 -type ferrite ferromagnetic materials may be consolidated into a ferroelectric-ferromagnetic composite having useful electromagnetic interference attenuation properties over a wide range of electromagnetic frequencies by fluxing the barium-strontium titanate with a combination of (1) a lithium compound and barium oxide or (2) copper oxide and barium oxide and thereafter mixing the fluxed ferroelectric with the ferromagnetic and sintering the combination at reduced temperature in the range of 1060.degree. C. to 1150.degree. C.
摘要翻译:钡钛酸锶铁电材料和AFe 2 O 4型铁氧体铁磁材料可以通过以下方式组合使用钛酸锶钛酸锶而将其固化成铁电铁磁性复合材料,该复合材料在广泛的电磁频率范围内具有有用的电磁干扰衰减特性:(1) 锂化合物和氧化钡或(2)氧化铜和氧化钡,然后将熔融的铁电体与铁磁体混合,并在1060℃至1150℃的温度范围内烧结组合。
摘要:
A film having a unique asymmetrical hysteresis, a method of making, and a method of using such a film in and/or as a device. An example describes a distinctive ferroelectric device as an infrared detector that operates at generally ambient conditions.
摘要:
A film having a unique asymmetrical hysteresis, a method of making, and a method of using such a film in and/or as a device. An example describes a distinctive ferroelectric device as an infrared detector that operates at generally ambient conditions.
摘要:
Mixtures of a rare earth and an intermetallic compound comprising the rare earth and a ferromagnetic metal selected from the group consisting of iron and cobalt which are formed by the reduction-diffusion process are decalcified by reacting the product of the reduction-diffusion reaction with neodecanoic acid and dissolving the calcium neodecanoate formed thereby in an organic solvent to remove it from the metallic components of the reaction product.
摘要:
An internal combustion engine ignition distributor wherein the circumferentially disposed stationary output electrodes carried by the distributor cap are made up of a resistive material having a predetermined resistance value per unit length.
摘要:
Systems and methods for determining a temperature of a ferroelectric sensor are provided. The ferroelectric sensor has operational characteristics defined by a polarization versus voltage hysteresis loop. In one exemplary embodiment, the method includes applying a symmetrical periodic voltage waveform to the ferroelectric sensor so as to induce the ferroelectric sensor to traverse the polarization versus voltage hysteresis loop. The method further includes monitoring voltages across the ferroelectric sensor and polarization states of the ferroelectric sensor over a first time interval to determine a first zero field polarization state and a first coercive field voltage. The method further includes determining a first temperature value indicative of the temperature of the ferroelectric sensor based on the first coercive field voltage.