摘要:
In a pressure swing adsorption system for the purification of hydrogen to be used in an ammonia synthesis gas, nitrogen is employed as a purge gas at an elevated purge pressure. The hydrogen recovered at adsorption pressure contains about 20-25% nitrogen and is advantageous for use as said ammonia synthesis gas. The purge gas is expanded to generate power that can be used to compress air being passed to an air separation system. The nitrogen recovered therein can be employed as said purge gas, while the oxygen recovered can conveniently be employed in a hydrogen generation system used to form said hydrogen passed to the pressure swing adsorption system.
摘要:
Normal paraffins are separated from a hydrocarbon vapor feedstream having 10 to 25 carbon atoms per molecule in a constant pressure process employing a molecular sieve adsorbent and n-hexane for purging and for dilution of gas oil - containing feedstocks. A portion of the countercurrent, desorption purge effluent is employed as a hexane - containing cocurrent purge stream, thereby significantly reducing the required amount of n-hexane purge recycle material, and the size of the equipment and the energy consumed in the processing of said recycle stream. A portion of said countercurrent purge effluent can also be used to provide a source of n-hexane diluent for the gas oil - containing feedstocks, as can the cocurrent purge effluent, resulting in further reduction in required equipment and energy costs, and increasing adsorption efficiency and adsorbent utilization.
摘要:
One portion comprising about 30-80% of a hydrogen-containing feed gas having a relatively high carbon dioxide content is preheated to remove a substantial portion of said carbon dioxide therefrom. The thus - preheated stream is passed to a pressure swing adsorption bed from which a purified hydrogen stream is withdrawn. Upon completion of this step, the unpretreated portion of the feed gas is passed to the feed end of the bed, with purified hydrogen continuing to be withdrawn from the bed. In cyclic pressure swing adsorption operations employing such a two-feed process, the recovery of purified hydrogen is enhanced as compared with operations in which none of the feed gas is pretreated for carbon dioxide removal or in which all of the feed gas is so treated for removal of carbon dioxide therefrom.
摘要:
An apparatus for the production of ammonia synthesis gas comprises a hydrocarbon convertor for converting a hydrocarbon feed to an effluent containing hydrogen and carbon monoxide by reaction with air which hydrocarbon convertor includes means to provide air in excess of the stoichiometric amount of nitrogen required for ammonia synthesis. The effluent from the hydrocarbon convertor is in communication with a water gas shift convertor for converting the carbon monoxide in the effluent to carbon dioxide. The water gas shift convertor is in communication with a pressure-swing adsorption system capable of selectively adsorbing carbon dioxide, carbon monoxide, methane and other impurities from hydrogen and a portion of the nitrogen fed in the gas mixture to the pressure swing adsorption system. The pressure swing adsorption system is provided with a conduit for discharging a partially purified ammonia synthesis gas mixture of hydrogen and nitrogen and a conduit for discharging purge gas.
摘要:
Effluent gas streams for steam reforming, partial oxidation or coal gasification operations are advantageously treated in shift conversion, scrubbing and pressure swing adsorption units for recovery of a purified, hydrogen-containing product gas stream. By recycling a portion of the waste gas removed from the pressure swing adsorption system to the shift conversion unit and/or to the effluent gas generation operation, enhanced product recovery is achieved without the necessity for employing low temperature shift or for achieving essentially complete removal of the carbon dioxide content of the gas being treated prior to its passage to said pressure swing adsorption system.
摘要:
The heat capacity of activated carbon adsorbent pellets is enhanced by the mixing of activated carbon powder with a higher heat capacity, inert inorganic material, such as dense alumina, prior to pelletizing. The resulting doped adsorbent enhances the operation of adiabatic pressure swing adsorption processes by decreasing the cyclic temperature change in the adsorbent bed during each processing cycle of the process.
摘要:
Bed utilization and product recovery are enhanced in pressure swing adsorption operations, especially for high pressure applications, by terminating cocurrent depressurization at a relatively high intermediate pressure level. Additional void space gas is released from each main adsorption bed by partial countercurrent depressurization prior to conventional countercurrent blowdown. Such additional gas is passed to a satellite bed adapted for simultaneous release of gas from its discharge end, thereby cocurrently depressurizing said satellite bed from said intermediate pressure level, with the thus-released gas being passed to the discharge end of another satellite bed or beds and/or another main bed or beds for pressure equalization and/or purging purposes. The satellite bed is one of a satellite group of adsorption beds containing a lesser number and smaller beds than in said main bed system, the satellite beds not being operated above said intermediate pressure level.
摘要:
The hot effluent from the catalytic steam reforming of a major portion of a fluid hydrocarbon feed stream in the reformer tubes of a primary reformer, or said effluent after secondary reforming thereof, is mixed with the hot effluent from the catalytic steam reforming of the remaining portion of the feed discharged from the reformer tubes of a primary reformer-exchanger. The combined gas steam is passed on the shell side of the reformer-exchanger countercurrently to the passage of feed in the reformer tubes thereof, thus supplying the heat for the reforming of the portion of the feed passed through the reformer tubes of the reformer-exchanger. At least about 2/3 of the hydrocarbon feed stream is passed to the reformer tubes of said primary reformer, heated by radiant heat transfer and/or by contact with combustion gases, at a steam/hydrocarbon mole ratio of about 2-4/1. The remainder of said feed stream is passed to the reformer tubes of said reformer-exchanger at a steam/hydrocarbon mole ratio of about 3-6/1. The reformer shell of the reformer-exchanger is internally insulated by a refractory lining or by use of a double shell with passage of water or a portion of the feed material between the inner and outer shells. There is no significant difference between the pressure inside and outside of the reformer tubes of said primary reformer-exchanger.
摘要:
Organic solvents are removed from air by adsorption on fixed beds of activated carbon. Each carbon bed is periodically regenerated by heating it in two distinct steps and then by cooling it in two steps with a circulated inert gas stream. During the first step of heating a portion of the water is removed from the inert gas by molecular sieves or preferably by chilling the inert gas to below 10.degree. C. In a second step of heating the essentially water-free liquid solvent is recovered by chilling the inert gas. The first step of cooling of a bed is overlapping with the first step of heating of another bed. The hot gas leaving the cooled bed is used to heat the other bed. Between the two stages of heating the bed is put on "hold" till the final cooling step of another bed is completed.
摘要:
Integrated primary-secondary reforming operations are carried out with the partly reformed product effluent from the reformer tubes of the primary reforming zone passing to a catalyst-free reaction space at the feed end of a catalyst bed in the secondary reforming zone. The exothermic heat of reaction generated in said reaction space supplies the necessary heat for the endothermic reforming reaction that occurs in the catalyst bed of the secondary reforming zone, and the still hot secondary product effluent leaving the secondary reforming zone is passed in the shell side of the primary reformer zone to supply the endothermic heat of reaction required in said primary reforming zone. Essentially autothermal operating conditions are thereby achieved so as to essentially eliminate the necessity for employing an external fuel-fired primary reformer and/or for consuming a portion of the hyrocarbon feed material for fuel purposes.