摘要:
In function-as-a-service (FaaS) environments, a client makes use of a function executing within a trusted execution environment (TEE) on a FaaS server. Multiple tenants of the FaaS platform may provide functions to be executed by the FaaS platform via a gateway. Each tenant may provide code and data for any number of functions to be executed within any number of TEEs on the FaaS platform and accessed via the gateway. Additionally, each tenant may provide code and data for a single surrogate attester TEE. The client devices of the tenant use the surrogate attester TEE to attest each of the other TEEs of the tenant and establish trust with the functions in those TEEs. Once the functions have been attested, the client devices have confidence that the other TEEs of the tenant are running on the same platform as the gateway.
摘要:
Example methods and systems are directed to isolating memory in trusted execution environments (TEEs). In function-as-a-service (FaaS) environments, a client makes use of a function executing within a TEE on a FaaS server. To minimize the trusted code base (TCB) for each function, each function may be placed in a separate TEE. However, this causes the overhead of creating a TEE to be incurred for each function. As discussed herein, multiple functions may be placed in a single TEE without compromising the data integrity of each function. For example, by using a different extended page table (EPT) for each function, the virtual address spaces of the functions are kept separate and map to different, non-overlapping physical address spaces. Partial overlap may be permitted to allow functions to share some data while protecting other data. Memory for each function may be encrypted using a different encryption key.
摘要:
Example methods and systems are directed to reducing latency in providing trusted execution environments (TEES). Initializing a TEE includes multiple steps before the TEE starts executing. Besides workload-specific initialization, workload-independent initialization is performed, such as adding memory to the TEE. In function-as-a-service (FaaS) environments, a large portion of the TEE is workload-independent, and thus can be performed prior to receiving the workload. Certain steps performed during TEE initialization are identical for certain classes of workloads. Thus, the common parts of the TEE initialization sequence may be performed before the TEE is requested. When a TEE is requested for a workload in the class and the parts to specialize the TEE for its particular purpose are known, the final steps to initialize the TEE are performed.
摘要:
Technologies for control flow exploit mitigation include a computing device having a processor with real-time instruction tracing support. During execution of a process, the processor generates trace data indicative of control flow of the process. The computing device analyzes the trace data to identify suspected control flow exploits. The computing device may use heuristic algorithms to identify return-oriented programming exploits. The computing device may maintain a shadow stack based on the trace data. The computing device may identify indirect branches to unauthorized addresses based on the trace data to identify jump-oriented programming exploits. The computing device may check the trace data whenever the process is preempted. The processor may detect mispredicted return instructions in real time and invoke a software handler in the process space of the process to verify and maintain the shadow stack. Other embodiments are described and claimed.
摘要:
Embodiments of apparatuses and methods for hardware enforced memory access permissions are disclosed. In one embodiment, a processor includes address translation hardware and memory access hardware. The address translation hardware is to support translation of a first address, used by software to access a memory, to a second address, used by the processor to access the memory. The memory access hardware is to detect an access permission violation.
摘要:
Generally, this disclosure provides systems, methods and computer readable media for a protected memory view in a virtual machine (VM) environment enabling nested page table access by trusted guest software outside of VMX root mode. The system may include an editor module configured to provide access to a nested page table structure, by operating system (OS) kernel components and by user space applications within a guest of the VM, wherein the nested page table structure is associated with one of the protected memory views. The system may also include a page handling processor configured to secure that access by maintaining security information in the nested page table structure.
摘要:
In accordance with some embodiments, a protected execution environment may be defined for a graphics processing unit. This framework not only protects the workloads from malware running on the graphics processing unit but also protects those workloads from malware running on the central processing unit. In addition, the trust framework may facilitate proof of secure execution by measuring the code and data structures used to execute the workload. If a part of the trusted computing base of this framework or protected execution environment is compromised, that part can be patched remotely and the patching can be proven remotely throughout attestation in some embodiments.
摘要:
Various embodiments of this disclosure may describe method, apparatus and system for reducing system latency caused by switching memory page permission views between programs while still protecting critical regions of the memory from attacks of malwares. Other embodiments may be disclosed and claimed.
摘要:
Embodiments of techniques and systems for increasing efficiencies in computing systems using virtual memory are described. In embodiments, instructions which are located in two memory pages in a virtual memory system, such that one of the pages does not permit execution of the instructions located therein, are identified and then executed under temporary permissions that permit execution of the identified instructions. In various embodiments, the temporary permissions may come from modified virtual memory page tables, temporary virtual memory page tables which allow for execution, and/or emulators which have root access. In embodiments, per-core virtual memory page tables may be provided to allow two cores of a computer processor to operate in accordance with different memory access permissions. in embodiments, a physical page permission table may be utilized to provide for maintenance and tracking of per-physical-page memory access permissions. Other embodiments may be described and claimed.
摘要:
Various embodiments of this disclosure may describe method, apparatus and system for reducing system latency caused by switching memory page permission views between programs while still protecting critical regions of the memory from attacks of malwares. Other embodiments may be disclosed and claimed.