摘要:
Transducer with different array configurations and methods of using the transducers are provided. An electrode layer on one side of a transducer device defines a one-dimensional array of elements. An electrode layer on an opposite side of the transducer device defines a multi-dimensional array. For example, one transducer device may be used for both two-dimensional imaging and three-dimensional imaging in response to the one-dimensional array and multi-dimensional array electrode configurations. Real time three-dimensional imaging and two-dimensional imaging may be provided with a single transducer. As another example, elements defined by one electrode configuration have a different surface area than elements defined by another electrode configuration. The different configurations on opposite sides of the transducer devices may be a same type (e.g. both one-dimensional arrays) or different types.
摘要:
Contrast agent destruction transmissions have reduced biological effect in medical diagnostic ultrasound. Ramping-up amplitude and/or ramping-down frequency reduce biological effect. The amplitude ramps up linearly or non-linearly. The change in amplitude or frequency occurs over a single waveform or over a sequence of separate transmissions. An envelope of the single waveform or the sequence of separate transmissions has a non-uniform, asymmetrical, symmetrical, rectangular or other shape. For example, the frequency ramp-down is provided with a non-Gaussian envelope. The amplitude ramp-up or frequency ramp-down is a progressively increasing destructive characteristic or ability, destroying contrast agent at different regions relative to focal regions with a minimum of acoustic energy.
摘要:
Aberration estimation uses cross correlation of receive-focused transmit element data. A set of sequentially fired broad transmit beams insonify an object from different steering angles. Each transmit beam emanates from an actual or a virtual transmit element. For every firing, a receive beamformer forms a transmit element image of the insonified region by focusing the received signals. An estimator estimates aberration by cross correlating or comparing the transmit element images. Where a virtual transmit element is used, the virtual transmit element images are back propagated to an actual transmit element position before aberration estimation. The estimations are used to form corrected transmit element images which are then summed pre-detection to form a high-resolution synthetic transmit aperture. Alternatively, the estimations are used to improve conventional focused-transmit imaging.
摘要:
A time domain technique for implementing an adaptive wall filter improves imaging of low-velocity blood flow by removing signals associated with slowly moving tissue. Adaptive wall filtering is performed by estimating wall velocity and bandwidth, and then filtering the basebanded data with a complex time domain notch filter. The wall velocity estimate determines the center frequency of a wall signal while the wall variance estimate determines the wall signal bandwidth. The complex filter coefficients selected are those which will center the complex notch filter on the wall center frequency, and which will set the filter cutoff frequencies (measured from this center frequency) to match the wall signal bandwidth.
摘要:
An ultrasonic imaging system for displaying color flow images includes a receiver which demodulates ultrasonic echo signals received by a transducer array and dynamically focuses the baseband echo signals. A color flow processor includes a time domain adaptive wall filter which automatically adjusts to changes in frequency and bandwidth of the wall signal components in the focused baseband echo signals. The mean frequency of the resulting filtered baseband echo signals is used to indicate velocity of flowing reflectors and to control color in the displayed image.
摘要:
A medical ultrasonic imaging method uses transmitted plane waves, or transmitted wavefronts that are substantially planar, to improve contrast agent imaging by generating peak pressures that are more uniform over depth. Depending on the type of contrast agent, the returned frequencies of interest, and the desired strength of the non-linear response, multiple wavefronts can be generated at substantially the same time to increase peak pressures.
摘要:
The preferred embodiments described herein provide a medical diagnostic ultrasound imaging system and method for determining an acoustic output parameter of a transmitted ultrasonic beam. In one preferred embodiment, the ultrasound system determines an acoustic output parameter of a transmitted ultrasonic beam in a user-selected region. In another preferred embodiment, the ultrasound system achieves a specified acoustic output parameter of a transmitted ultrasonic beam in a selected region by automatically adjusting an operating parameter of the ultrasound imaging system. In yet another preferred embodiment, a region is selected in the ultrasound image that does not contain a peak acoustic output parameter of a transmitted ultrasonic beam. The system then determines an acoustic output parameter of the transmitted ultrasonic beam in that region and provides an indication of the determined acoustic output parameter.
摘要:
Disclosed are a system and method of selecting one or more operational parameters of an ultrasonic imaging system. In particular, methods and means are disclosed for automatically or semi-automatically determining a best operating frequency, or for determining whether a system should operate in a fundamental imaging mode or a harmonic imaging mode.
摘要:
During scanning or in real-time with acquisition of ultrasound data, a plurality of images is generated corresponding to a plurality of different planes in a volume. The volume scan data is searched by a processor to identify desired views. Multiple standard or predetermined views are generated based on plane positioning within the volume by the processor. Multi-planar reconstruction, guided by the processor, allows for real-time imaging of multiple views at a substantially same time. The images corresponding to the identified views are generated independent of the position of the transducer. The planes may be positioned in real-time using a pyramid data structure of coarse and fine data sets.
摘要:
A pulse echo beamforming system generates high spatial bandwidth ultrasound images using only a few transmit/receive events per frame. Each transmit/receive event consists of firing an unfocused or weakly focused wave and receiving and storing the echo on every receive channel. Each set of stored echoes is delayed and apodized to form component beams for each desired image point in the region insonified by that particular wave. The final images are synthesized by adding two or more of the component beams for each image point.