摘要:
A process for preparing C1-C4-oxygenates from a reactant stream A which comprises essentially a C1-C4-alkane or a mixture of C1-C4-alkanes, by a) branching off a substream B of the reactant stream A and allowing it to react in a reactor with oxygen or an oxygenous gas stream C, which converts a portion of the C1-C4-alkane or a portion of the mixture which comprises C1-C4-alkanes to C1-C4-oxygenates, b) removing at least 90 mol % of the C1-C4-oxygenates formed from the product stream D resulting from step a) to form a remaining low boiler stream E, which comprises combining the low boiler stream E with the reactant stream A without further workup and without combination with the substream B down-stream of the branching site of the substream B.
摘要:
A process for preparing acrylic acid from ethanol and formaldehyde, in which, in a reaction zone A, the ethanol is partially oxidized to acetic acid in a heterogeneously catalyzed gas phase reaction, the product gas mixture A obtained and a formaldehyde source are used to obtain a reaction gas input mixture B which comprises acetic acid and formaldehyde and has the acetic acid in excess over the formaldehyde, and the formaldehyde present in reaction gas input mixture B is aldol-condensed with acetic acid present in reaction gas input mixture B to acrylic acid under heterogeneous catalysis in a reaction zone B, and unconverted acetic acid still present along-side the acrylic acid target product in the product gas mixture B obtained is removed therefrom, and the acetic acid removed is recycled into the production of reaction gas input mixture B.
摘要:
A process for preparing acrylic acid from ethanol and formaldehyde, in which, in a reaction zone A, the ethanol is partially oxidized to acetic acid in a heterogeneously catalyzed gas phase reaction, the product gas mixture A obtained and a formaldehyde source are used to obtain a reaction gas input mixture B which comprises acetic acid and formaldehyde and has the acetic acid in excess over the formaldehyde, and the formaldehyde present in reaction gas input mixture B is aldol-condensed with acetic acid present in reaction gas input mixture B to acrylic acid under heterogeneous catalysis in a reaction zone B, and unconverted acetic acid still present along-side the acrylic acid target product in the product gas mixture B obtained is removed therefrom, and the acetic acid removed is recycled into the production of reaction gas input mixture B.
摘要:
The present invention relates to a catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride, which has a plurality of catalyst zones which are arranged in series in the reaction tube and have been produced using an antimony trioxide which comprises a significant proportion of valentinite. The present invention further relates to a process for gas-phase oxidation, in which a gas stream comprising at least one hydrocarbon and molecular oxygen is passed through a catalyst produced using an antimony trioxide which comprises a significant proportion of valentinite.
摘要:
The present invention relates to a catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride, which has a plurality of catalyst zones which are arranged in series in the reaction tube and have been produced using an antimony trioxide which comprises a significant proportion of valentinite. The present invention further relates to a process for gas-phase oxidation, in which a gas stream comprising at least one hydrocarbon and molecular oxygen is passed through a catalyst produced using an antimony trioxide which comprises a significant proportion of valentinite.
摘要:
The catalytically active mass of a catalyst molded body comprises a multi-element oxide containing vanadium and phosphorus. The specific pore volume PV (in ml/g) of the catalyst molded body, the bulk density p of the catalyst molded body (in kg/l), the geometric surface area Ageo (in mm2), and the geometric volume Vgeo (in mm3) of the catalyst molded body satisfy the condition 0.275
摘要:
The invention relates to a catalyst molded body for preparing maleic anhydride by gas-phase oxidation of a hydrocarbon having at least four carbon atoms using a catalytically active composition contains vanadium, phosphorus and oxygen, where the shaped catalyst body has an essentially cylindrical body having a longitudinal axis, wherein the cylindrical body has at least two parallel internal holes which are essentially parallel to the cylinder axis of the body and go right through the body. The catalyst molded body has a large outer surface area, a lower pressure loss and sufficient mechanical stability.
摘要:
The invention relates to a catalyst molded body for preparing maleic anhydride by gas-phase oxidation of a hydrocarbon having at least four carbon atoms using a catalytically active composition contains vanadium, phosphorus and oxygen, where the shaped catalyst body has an essentially cylindrical body having a longitudinal axis, wherein the cylindrical body has at least two parallel internal holes which are essentially parallel to the cylinder axis of the body and go right through the body. The catalyst molded body has a large outer surface area, a lower pressure loss and sufficient mechanical stability.
摘要:
A process for preparing shaped catalyst bodies whose active composition is a multielement oxide, in which a finely divided precursor mixture with addition of graphite having a specific particle size is shaped to the desired geometry and then treated thermally.
摘要:
In a process for controlling a gas phase oxidation reactor for preparation of phthalic anhydride, by passing a gas stream which comprises an aromatic hydrocarbon and molecular oxygen through a multitude of reaction tubes arranged in the gas phase oxidation reactor, each of which comprises a bed of at least one catalyst and the temperature of which can be controlled by means of a heat transfer medium, at least one control parameter is measured and correcting interventions for control of the control parameter are determined, the at least one control parameter comprising the phthalic anhydride yield and the correcting parameter used being the temperature of the heat carrier medium. Over at least 90% of the lifetime of the catalyst, the change in the correcting parameter is limited to a maximum of 0.5 K within a period of 30 days. In this way, the cumulated phthalic anhydride yield over the lifetime of the catalyst is maximized.