摘要:
During manufacture of an SOFC assembly, an inhibitor is included to prevent migration of silver braze during subsequent use of the SOFC assembly. The inhibitor may take any of several forms, either individually or in combination. Inhibitors comprehended by the present invention include, but are not limited to: a) a mechanical barrier that can be printed or dispensed onto one or more SOFC stack elements around the braze areas to prevent mechanically-driven migration; b) an electrically insulating feature in the electrolyte or interlayer over the electrolyte layer in the seal margins to prevent electrical potential-driven migration; and 3) chemical modification of the braze itself as by addition of an alloying metal such as palladium.
摘要:
During manufacture of an SOFC assembly, an inhibitor is included to prevent migration of silver braze during subsequent use of the SOFC assembly. The inhibitor may take any of several forms, either individually or in combination. Inhibitors comprehended by the present invention include, but are not limited to: a) a mechanical barrier that can be printed or dispensed onto one or more SOFC stack elements around the braze areas to prevent mechanically-driven migration; b) an electrically insulating feature in the electrolyte or interlayer over the electrolyte layer in the seal margins to prevent electrical potential-driven migration; and 3) chemical modification of the braze itself as by addition of an alloying metal such as palladium.
摘要:
A cathode of a solid-oxide fuel cell includes a first ionic conducting layer, a second layer deposited over the first layer and formed from a mixed ionic and electronic conductor layer including an oxygen ion conducting phase, and a third layer deposited over the second layer and formed from a mixed ionic and electronic conductor layer. A sintering aid and pore formers are added to the second layer and the third layer to establish ionic, electronic, and gas diffusion paths that are contiguous. By adjusting the microstructure of the second and the third layer, a high performance low resistance cathode is formed that bonds well to the electrolyte, is highly electro-catalytic, and has a relatively low overall resistance. By using inexpensive and readily available substances as sintering aid and as pore formers, a low-cost cathode is provided.
摘要:
A method for manufacturing a planar sensor, comprises disposing a film of a material on a substrate, wherein the material is selected from the group consisting of platinum, rhodium, palladium and mixtures and alloys comprising at least one of the foregoing materials; annealing the material; measuring a resistance value of the material; laser trimming the annealed material; heat treating the laser trimmed material; and laser trimming the heat treated material to form the sensor.
摘要:
Exemplary embodiments of the present invention are related to an apparatus and method for providing a strain tolerant electrode, comprising: an upper layer; a lower layer; with the potential for a plurality of compliant members providing electrical communication between the upper layer and the lower layer; and wherein a surface of the upper layer is in direct contact with a surface of the lower layer to provide an electrical path between the upper layer and the lower layer.
摘要:
An improved LSCF 6428 perovskite material of the type La12zSrx+zCo0.2+aFe0.8+bO3−δ wherein x=0.4, z=(0-0.1), a=(0.01-0.04), and b=(0.05-0.15) for use as an SOFC cathode having increased electronic and ionic conductivity. The general formula is similar to the prior art formulae (La0.6Sr0.4)1−zCo0.2Fe0.8O3−δ and La0.6Sr0.4Co0.2Fe0.8O3−δ but applies the z term to La and Sr independently as well as reducing the overall content of La. Further, by adding a small amount (a) of extra Co ions, catalytic activity, conductivity, and sinterability are further enhanced. Adding small amounts (b) of Fe and/or Fe and Co moderates the thermal expansion coefficient with no adverse effect on crystal structure or fuel cell performance. Improved sinterability, microstructure, and reduced film cracking result in high power density of fuel cells. An inherently low-cost solid state reaction method is described.
摘要:
A cathode of a solid-oxide fuel cell includes a first ionic conducting layer, a second layer deposited over the first layer and formed from a mixed ionic and electronic conductor layer including an oxygen ion conducting phase, and a third layer deposited over the second layer and formed from a mixed ionic and electronic conductor layer. A sintering aid and pore formers are added to the second layer and the third layer to establish ionic, electronic, and gas diffusion paths that are contiguous. By adjusting the microstructure of the second and the third layer, a high performance low resistance cathode is formed that bonds well to the electrolyte, is highly electro-catalytic, and has a relatively low overall resistance. By using inexpensive and readily available substances as sintering aid and as pore formers, a low-cost cathode is provided.
摘要:
A bipolar plate for use in a fuel cell assembly having channels for conveying oxygen and fuel along the cathode and anode surfaces of adjacent fuel cell units. The channels are separated by lands for making electrical and mechanical contact with the respective cathode and anode surfaces and preferably are so configured as to provide the minimum area required for satisfactory electrical contact and mechanical support. The lands and channels preferably are formed as peaks and valleys or as raised or recessed dimples for making electrical/mechanical contact with the cathode and anode surfaces and are coated in those contact areas with corrosion-resistant metal such as gold, platinum, ruthenium, or combinations thereof.
摘要:
An anode for use in an anode-supported planar solid oxide fuel cell (SOFC) is formed from a Ni—YSZ cermet composition that includes a sintering aid selected from the group consisting of an oxide, a carbonate, and mixtures thereof of at least one metal of Group 2 of the Periodic Table.
摘要:
In one embodiment, a coated article comprises a substrate with a coating comprising diamond like carbon layer, wherein the diamond like carbon layer comprising carbon and sulfur as terminal sulfur functional groups, wherein greater than or equal to about 70 wt % of the carbon present in the diamond like carbon layer comprises a sp3 carbon-to-carbon bond. The diamond like carbon layer has a concentration gradient such that the diamond like carbon layer on a side toward the substrate comprises a lower concentration of sulfur than a surface of the diamond like carbon layer disposed on a side of the layer opposite the substrate. The surface comprises about 0.1 at % to about 15 at % sulfur.