Abstract:
Methods and apparatuses for managing coexistence of multiple wireless devices that share a radio frequency band and communicate with a wireless network device. The wireless devices include both wireless personal area network (WPAN) and wireless local area network (WLAN) devices. The wireless network device monitors data activity for WPAN devices to determine whether the WPAN devices are active or inactive, and sets one or more polling intervals for the WPAN devices accordingly. The wireless network device consolidates polling for multiple WPAN devices into a common WPAN polling time period and sends a radio frequency (RF) reservation request to a WLAN access point (AP), the RF reservation request including an indication of a duration for the common WPAN polling time period, during which the multiple WPAN devices are polled. WLAN data packet transmission is delayed during the common WPAN polling time period to mitigate coexistence interference.
Abstract:
Embodiments relate to an integrated circuit of an electronic device that coordinates activities with another integrated circuit of the electronic device. The integrated circuit includes an interface circuit and a processor circuit. The interface circuit communicates over a multi-drop bus connected to multiple electronic components. The processor circuit receives an authorization request from the integrated circuit via the interface circuit and the multi-drop bus. The received authorization request relates to authorization to perform an activity on the other integrated circuit. In response to receiving the authorization request, the processor circuit determines whether the other integrated circuit is authorized to execute the activity. In response to determining that the other integrated circuit is authorized to execute the activity, the processor circuit sends, to the other integrated circuit over a configurable direct connection, an authorization signal authorizing the other integrated circuit to execute the activity.
Abstract:
Methods performed by a first sink device, a source device, or a second sink device. The first sink device is connected to a source device via a first communication link and a second sink device via a second communication link, wherein the second sink device is configured to eavesdrop on communications between the first sink device and the source device on the first communication link. The methods include determining an occurrence of a trigger event and modifying an operation of at least one of the first sink device, the second sink device or the source device based at least on the trigger event occurring.
Abstract:
Systems and methods for low power wireless device detection are provided. In one or more implementations, a transmitting/advertising device may include a device identifier and/or one or more time-offset bits in a wireless communication frame for a scanning/receiving device. The scanning/receiving device may perform sequence-level correlation operations to detect the presence of the transmitting/advertising device. The sequence-level correlation operations may detect the transmitting/advertising device based on a detection of a correlation signal peak corresponding to the device identifier, and/or based relative timing of the correlation signal peak corresponding to the device identifier and a correlation signal peak corresponding to another item in the wireless communication frame.
Abstract:
Methods and apparatuses for mitigating coexistence interference in a wireless device between a WLAN interface and a WPAN interface during a WLAN authentication process. The wireless device associates with a WLAN access point (AP), and after receiving a WLAN association response from the WLAN AP, the wireless device alternates between WLAN time periods, during which WLAN transmission is enabled and WPAN transmission is disabled, and WPAN time periods, during which WPAN transmission is enabled and WLAN transmission is disabled, during the WLAN authentication process. Durations of the WPAN time periods are based at least in part on a WPAN profile, e.g., a Bluetooth profile, in use by the wireless device. Durations of the WLAN time periods are based at least in part on receipt of WLAN authentication messages from the WLAN AP during the authentication process or expiration of WLAN authentication process timers.
Abstract:
Methods and apparatus to mitigate coexistence interference among multiple wireless subsystems and wired connection ports of a computing device are described. A processor obtains configurations for at least two wireless subsystems and for a connection state of at least one wired connection port. When the first and second wireless subsystem configurations or the connection state of the at least one wired connection port indicate potential or actual coexistence interference, the processor is configured to adjust wireless circuitry of the first and second wireless subsystems. The first wireless subsystem is configured based on frequency bands used by the first and second wireless subsystems, while the second wireless subsystem is configured based on the connection state. In an embodiment, the first wireless subsystem operates in accordance with a wireless personal area network protocol, and the second wireless subsystem operates in accordance with a wireless local area network protocol.
Abstract:
Systems and methods for low power wireless device detection are provided. In one or more implementations, a transmitting/advertising device may include a device identifier and/or one or more time-offset bits in a wireless communication frame for a scanning/receiving device. The scanning/receiving device may perform sequence-level correlation operations to detect the presence of the transmitting/advertising device. The sequence-level correlation operations may detect the transmitting/advertising device based on a detection of a correlation signal peak corresponding to the device identifier, and/or based relative timing of the correlation signal peak corresponding to the device identifier and a correlation signal peak corresponding to another item in the wireless communication frame.
Abstract:
Methods performed by a first sink device, a source device, or a second sink device. The first sink device is connected to a source device via a first communication link and a second sink device via a second communication link, wherein the second sink device is configured to eavesdrop on communications between the first sink device and the source device on the first communication link. The methods include determining an occurrence of a trigger event and modifying an operation of at least one of the first sink device, the second sink device or the source device based at least on the trigger event occurring.
Abstract:
A mobile device receives an invitation to commence a media session. The invitation may be from a legitimate caller or from a spoofing caller. The mobile device checks parameters using templates to evaluate a consistency of the invitation with respect to a database in the mobile device. The templates include session protocol, network topology, routing, and social templates. Specific template data includes standardized protocol parameters, values from a database of the mobile device and phonebook entries of the mobile device. Examples of the parameters include capabilities, preconditions, vendor equipment identifiers, a hop counter value and originating network information. The originating network information may be obtained from the database by first querying an on-line database to determine a network identifier associated with caller identification information in the invitation. Then, the obtained carrier identifier is used as an index into a database to obtain template data characteristic of the identified originating network.