Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
Methods and apparatuses for wireless communication devices to discover each other and share information are described. Wireless communication devices transmit and receive messages to identify compatible wireless communication devices. The messages include indicators for a communication service and one or more user identification values. A scanning wireless communication device identifies a message from a broadcasting wireless communication device that satisfies a set of matching filter criteria and extracts user identification values from the message. The scanning wireless communication device compares the extracted user identification values to a local set of user identification values. When an extracted user identification value from the message matches a user identification value in the local set of user identification values, the scanning wireless communication device establishes a connection to the broadcasting wireless communication device according to the communication service indicated in the message.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.
Abstract:
Methods and apparatuses for wireless communication devices to discover each other and share information are described. Wireless communication devices transmit and receive messages to identify compatible wireless communication devices. The messages include indicators for a communication service and one or more user identification values. A scanning wireless communication device identifies a message from a broadcasting wireless communication device that satisfies a set of matching filter criteria and extracts user identification values from the message. The scanning wireless communication device compares the extracted user identification values to a local set of user identification values. When an extracted user identification value from the message matches a user identification value in the local set of user identification values, the scanning wireless communication device establishes a connection to the broadcasting wireless communication device according to the communication service indicated in the message.
Abstract:
A proximity fence can be a location-agnostic fence defined by signal sources having no geographic location information. The proximity fence can correspond to a group of signal sources instead of a point location fixed to latitude and longitude coordinates. A signal source can be a radio frequency (RF) transmitter broadcasting a beacon signal. The beacon signal can include a payload that includes an identifier indicating a category to which the signal source belongs, and one or more labels indicating one or more subcategories to which the signal source belongs. The proximity fence defined by the group of signal sources can trigger different functions of application programs associated with the proximity fence on a mobile device, when the mobile device moves within the proximity fence and enters and exits different parts of the proximity fence corresponding to the different subcategories.