Abstract:
Systems and methods are disclosed for efficient buffering for a system having non-volatile memory (“NVM”). In some embodiments, a control circuitry of a system can use heuristics to determine whether to perform buffering of one or more write commands received from a file system. In other embodiments, the control circuitry can minimize read energy and buffering overhead by efficiently re-ordering write commands in a queue along page-aligned boundaries of a buffer. In further embodiments, the control circuitry can optimally combine write commands from a buffer with write commands from a queue. After combining the commands, the control circuitry can dispatch the commands in a single transaction.
Abstract:
Systems and methods are disclosed for generating efficient reads for a system having non-volatile memory (“NVM”). A read command can be separated by a host processor of the system into two phases: a) transmitting a command to a storage processor of the system, where the command is associated with one or more logical addresses, and b) generating data transfer information. The host processor can generate the data transfer information while the storage processor is processing the command from the host processor. Once the data transfer information has been generated and data has been read from the NVM, the data can be transferred.
Abstract:
Systems and methods are disclosed for logical block address (“LBA) bitmap usage for a system having non-volatile memory (“NVM”). A bitmap can be stored in volatile memory of the system, where the bitmap can store the mapping statuses of one or more logical addresses. By using the bitmap, the system can determine the mapping status of a LBA without having to access the NVM. In addition, the system can update the mapping status of a LBA with minimal NVM accesses. By reducing the number of NVM accesses, the system can avoid triggering a garbage collection process, which can improve overall system performance.
Abstract:
Systems and methods are disclosed for logical block address (“LBA) bitmap usage for a system having non-volatile memory (“NVM”). A bitmap can be stored in volatile memory of the system, where the bitmap can store the mapping statuses of one or more logical addresses. By using the bitmap, the system can determine the mapping status of a LBA without having to access the NVM. In addition, the system can update the mapping status of a LBA with minimal NVM accesses. By reducing the number of NVM accesses, the system can avoid triggering a garbage collection process, which can improve overall system performance.
Abstract:
Systems and methods are disclosed for efficient buffering for a system having non-volatile memory (“NVM”). In some embodiments, a control circuitry of a system can use heuristics to determine whether to perform buffering of one or more write commands received from a file system. In other embodiments, the control circuitry can minimize read energy and buffering overhead by efficiently re-ordering write commands in a queue along page-aligned boundaries of a buffer. In further embodiments, the control circuitry can optimally combine write commands from a buffer with write commands from a queue. After combining the commands, the control circuitry can dispatch the commands in a single transaction.
Abstract:
This can relate to non-regular parity distribution of a non-volatile memory (“NVM”), such as flash memory, and detection of the non-regular parity via a metadata tag. For example, each codeword of the NVM can include one or more parity pages that may be distributed at random through the NVM. To identify the page as a parity page, a parity page marker can be included in the metadata of that page. During power-up of the NVM, an address table including the logical-to-physical address mapping of the pages can be created. Pages including a parity page marker, however, can be skipped during the creation of this address table. Additionally, by having two or more parity pages associated with a codeword, an additional layer of protection can be provided for repairing errors in that codeword.
Abstract:
Systems and methods are disclosed for efficient buffering for a system having non-volatile memory (“NVM”). In some embodiments, a control circuitry of a system can use heuristics to determine whether to perform buffering of one or more write commands received from a file system. In other embodiments, the control circuitry can minimize read energy and buffering overhead by efficiently re-ordering write commands in a queue along page-aligned boundaries of a buffer. In further embodiments, the control circuitry can optimally combine write commands from a buffer with write commands from a queue. After combining the commands, the control circuitry can dispatch the commands in a single transaction.
Abstract:
Systems and methods are disclosed for correcting block errors. In particular, a system can store a parity page per page-modulo, where a pre-determined number of pages of a block or a band of the NVM may be allocated as page-modulo XOR (“PMX”) parity pages. This enables a space efficient approach for recovering from single-block data errors.
Abstract:
Systems and methods are disclosed for correction of block errors for a system having non-volatile memory (“NVM”). In particular, the system can store a parity page per page-modulo, where a pre-determined number of pages of a block or a band of the NVM may be allocated as page-modulo XOR (“PMX”) parity pages. This can be a space efficient approach for recovering from single-block data errors such as, for example, single-page uncorrectable error-correcting codes (“uECCs”) and/or errors caused by word line shorts.
Abstract:
Systems and methods are disclosed for improving performance of a system having non-volatile memory (“NVM”). The system can vertically re-vector defective blocks of a user region of the NVM to other blocks having the same plane or die's plane (“DIP”) but corresponding to a dead region of the NVM. Then, the system can select any band with more than one defective block and vertically re-vector one of its defective blocks to a band that has no defective blocks. At run-time, the system can monitor the number of vertical re-vectors per DIP. If at least one vertical re-vector has been performed on all DIPs of the NVM, a band of the user region can be allocated for the dead region.