Abstract:
Embodiments are disclosed for compressing radio maps of fingerprint-based positioning systems using different compression models. In an embodiment, a method comprises: receiving, by a computing device, access point (AP) data from a plurality of mobile devices operating in a geographic region, the AP data including signal strength measurements of AP signals received at a plurality of reference locations in the geographic region and uncertainty measurements associated with the signal strength measurements; determining a level of accuracy with the first compression model; responsive to the determining, selecting one of the first compression model or a second compression model to compress the AP data, the second compression model being different than the first compression model; compressing the AP data using the selected compression model; and responsive to a request from a mobile device operating in the geographic region, sending a data packet including the compressed AP data to the mobile device.
Abstract:
Methods, systems, and computer program products for correcting in-venue location estimation using structural information are described. A mobile device can use wireless location technologies and dead reckoning to determine an estimated location of the mobile device in a venue. The mobile device can compare the estimated location with a map of the venue. Upon determining that the estimated location conflicts with a structural constraint, the mobile device can adjust the location estimation using the structural information. Adjusting the location estimation can include adjusting a statistical filter that provides estimation of the location and changing a heading of the mobile device used in the dead reckoning.
Abstract:
A method comprising: receiving a radio map of an indoor venue using survey data collected by a survey device positioned throughout the venue, the radio map including a boundary; obtaining harvest data that correspond to locations that are outside of the boundary; filtering the harvest data; and extending the radio map using the survey data and the filtered harvest data, wherein the extended radio map is defined at least in part by an extension of the boundary.
Abstract:
Methods, systems, and computer program products for correcting in-venue location estimation using structural information are described. A mobile device can use wireless location technologies and dead reckoning to determine an estimated location of the mobile device in a venue. The mobile device can compare the estimated location with a map of the venue. Upon determining that the estimated location conflicts with a structural constraint, the mobile device can adjust the location estimation using the structural information. Adjusting the location estimation can include adjusting a statistical filter that provides estimation of the location and changing a heading of the mobile device used in the dead reckoning.
Abstract:
Methods, systems, and computer program product for prefetching location data based on predicted user behavior. A mobile device can request, from a user routine subsystem of the mobile device, a list of locations that a user of the mobile device routinely visits while the user carries the mobile device. The mobile device can determine a cluster of these locations that are within a specified distance between one another. The mobile device can request location data for these locations from a location server, even if the user is not at one of these locations. The location data can include a venue map and a venue location fingerprint. Upon detecting that the user entered a venue at one of these locations, the mobile device can determine a location of the user inside of the venue using the venue location fingerprint. The mobile device can then display the location on a venue map.
Abstract:
Methods, systems, and computer program product for prefetching location data based on predicted user behavior. A mobile device can request, from a user routine subsystem of the mobile device, a list of locations that a user of the mobile device routinely visits while the user carries the mobile device. The mobile device can determine a cluster of these locations that are within a specified distance between one another. The mobile device can request location data for these locations from a location server, even if the user is not at one of these locations. The location data can include a venue map and a venue location fingerprint. Upon detecting that the user entered a venue at one of these locations, the mobile device can determine a location of the user inside of the venue using the venue location fingerprint. The mobile device can then display the location on a venue map.
Abstract:
A method comprising: receiving a radio map of an indoor venue using survey data collected by a survey device positioned throughout the venue, the radio map including a boundary; obtaining harvest data that correspond to locations that are outside of the boundary; filtering the harvest data; and extending the radio map using the survey data and the filtered harvest data, wherein the extended radio map is defined at least in part by an extension of the boundary.
Abstract:
Embodiments are disclosed for compressing radio maps of fingerprint-based positioning systems using different compression models. In an embodiment, a method comprises: receiving, by a computing device, access point (AP) data from a plurality of mobile devices operating in a geographic region, the AP data including signal strength measurements of AP signals received at a plurality of reference locations in the geographic region and uncertainty measurements associated with the signal strength measurements; determining a level of accuracy with the first compression model; responsive to the determining, selecting one of the first compression model or a second compression model to compress the AP data, the second compression model being different than the first compression model; compressing the AP data using the selected compression model; and responsive to a request from a mobile device operating in the geographic region, sending a data packet including the compressed AP data to the mobile device.
Abstract:
A method comprising: receiving a harvest trace from a mobile device, the harvest trace including a plurality of location fixes each corresponding to a location at a venue, each location fix associated with data including one or more RSSI measurements of one or more wireless signals received from each of a plurality of wireless access points positioned at the venue, the plurality of location fixes including at least two location fixes that have a positional relationship with each other; comparing the data associated with one of the location fixes with data associated with a reference point identified in a radio map of the venue; and updating the radio map of the venue by updating the data associated with the reference point based on the data associated with the one of the location fixes.
Abstract:
Methods, systems, and computer program product for determining a building floor level are described. A mobile device can use wireless signal sources and location fingerprint data to determine a level of a building floor on which the mobile device is located. The location fingerprint data can include or be associated with a list and a count of wireless signal sources previously detected on each floor. The mobile device can compare the list and count with wireless signal sources detected by the mobile device, and use results of the comparison to configure a statistical filter that determines a location of the mobile device. The mobile device can then determine the location, including a building floor level, using the statistical filter.