Abstract:
Electronic devices are provided with ejectable component assemblies. Each ejectable component assembly may include a tray that can be loaded with one or more types of removable module, such as a mini-SIM card and a micro-SIM card, and inserted into the device. Each assembly may also include a base coupled to a circuit board for electrically coupling with the removable module, a cage for biasing the module down against the base, and a guide for retaining the module at a functional insertion position within the device.
Abstract:
A battery assembly for use in an electronic device is provided. The battery assembly may include a battery cell (e.g., a rechargeable battery cell), a battery connector for providing power from the battery cell to the electronic device, and a flex circuit electrically coupling the battery cell to the electronic device. The battery connector may be located adjacent the battery cell, and may include one or more alignment mechanisms for ensuring that conductive pads of the battery connector align properly with corresponding conductive elements of the electronic device. The battery cell may be fixed to the electronic device using an adhesive layer (e.g., double sided tape) placed between the cell and the electronic device. A tab may extend beyond the periphery of the battery cell to allow a user to pull or peal the battery cell from the electronic device for replacement or repair. In some embodiments, a tool may be used to grasp the tab.
Abstract:
A compact form factor integrated circuit card. In one embodiment, a Subscriber Identity Module (SIM) card is disclosed. In one embodiment, the SIM card has overall dimensions optimized for a particular application; e.g., 12.30 mm (±0.10 mm)×8.80 mm (±0.10 mm)×0.67 mm (+0.03/−0.07). In another embodiment, the SIM card has overall dimensions of 11.90 mm (±0.10 mm)×8.80 mm (±0.10 mm)×0.70 mm (maximum). Multiple complementary SIM card adapters and methods of use are also disclosed.
Abstract:
A battery assembly for use in an electronic device. The battery assembly may include a battery cell, a battery connector for providing power from the battery cell to the electronic device, and a flex circuit electrically coupling the battery cell to the electronic device. The battery connector may be located adjacent the battery cell, and may include one or more alignment mechanisms so that conductive pads connector align properly with corresponding conductive elements of the electronic device. The battery cell may be fixed to the electronic device using an adhesive layer placed between the cell and the electronic device. A tab may extend beyond the periphery of the battery cell to allow a user to pull or peal the battery cell from the electronic device for replacement or repair.
Abstract:
An electronic device may have a printed circuit to which electrical components are mounted. Electromagnetic shields may be mounted to the printed circuit over the components to suppress interference. A shield may have a metal frame covered with a conductive fabric. The conductive fabric may cover an opening in the top of the frame. An insulating layer may be formed on the lower surface of the conductive fabric to prevent shorts between components on the printed circuit and the conductive fabric. An insulating cap such as an elastomeric polymer cap may also be formed over each component to provide electrical isolation between the components and the conductive fabric. Shields may be formed by coupling shield cans to subscriber identity module shields or other metal structures in a device. Intervening wall structures may be removed to help provide additional shielding volume.
Abstract:
A compact form factor integrated circuit card. In one embodiment, a Subscriber Identity Module (SIM) card is disclosed. In one embodiment, the SIM card has overall dimensions optimized for a particular application; e.g., 12.30 mm (±0.10 mm)×8.80 mm (0.10 mm)×0.67 mm (+0.03/−0.07). In another embodiment, the SIM card has overall dimensions of 11.90 mm (±0.10 mm)×8.80 mm (±0.10 mm)×0.70 mm (maximum). Multiple complementary SIM card adapters and methods of use are also disclosed.
Abstract:
An electronic device may have a printed circuit to which electrical components are mounted. Electromagnetic shields may be mounted to the printed circuit over the components to suppress interference. A shield may have a metal frame covered with a conductive fabric. The conductive fabric may cover an opening in the top of the frame. An insulating layer may be formed on the lower surface of the conductive fabric to prevent shorts between components on the printed circuit and the conductive fabric. An insulating cap such as an elastomeric polymer cap may also be formed over each component to provide electrical isolation between the components and the conductive fabric. Shields may be formed by coupling shield cans to subscriber identity module shields or other metal structures in a device. Intervening wall structures may be removed to help provide additional shielding volume.
Abstract:
Coaxial cable connector systems including connector plugs and receptacles that consume a reduced amount of board space and are readily connected together. One example may provide coaxial connector plugs and receptacles that may be used to connect more than one coaxial cable. Another example may provide a connector system where a plug may rotate relative to the receptacle in order to simplify forming a connection. Another example may provide a connector system having a locking mechanism. These connector systems may provide connections for one, two, or more coaxial cables.
Abstract:
Electronic devices are provided with ejectable component assemblies. Each ejectable component assembly may include a tray that can be loaded with one or more types of removable module, such as a mini-SIM card and a micro-SIM card, and inserted into the device. Each assembly may also include a base coupled to a circuit board for electrically coupling with the removable module, a cage for biasing the module down against the base, and a guide for retaining the module at a functional insertion position within the device.