摘要:
In some aspects, a microelectronic structure is provided that includes (1) a first conducting layer; (2) a first dielectric layer formed above the first conducting layer and having a feature that exposes a portion of the first conducting layer; (3) a graphitic carbon film disposed on a sidewall of the feature defined by the first dielectric layer and in contact with the first conducting layer at a bottom of the feature; and (4) a second conducting layer disposed above and in contact with the graphitic carbon film. Numerous other aspects are provided.
摘要:
In some aspects, a microelectronic structure is provided that includes (1) a first conducting layer; (2) a first dielectric layer formed above the first conducting layer and having a feature that exposes a portion of the first conducting layer; (3) a graphitic carbon film disposed on a sidewall of the feature defined by the first dielectric layer and in contact with the first conducting layer at a bottom of the feature; and (4) a second conducting layer disposed above and in contact with the graphitic carbon film. Numerous other aspects are provided.
摘要:
Memory cells, and methods of forming such memory cells are provided that include a steering element coupled to a carbon-based reversible resistivity-switching material. In particular embodiments, methods in accordance with this invention etch a carbon nano-tube (“CNT”) film formed over a substrate, the methods including coating the substrate with a masking layer, patterning the masking layer, and etching the CNT film through the patterned masking layer using a non-oxygen based chemistry. Other aspects are also described.
摘要:
Memory cells, and methods of forming such memory cells are provided that include a steering element coupled to a carbon-based reversible resistivity-switching material. In particular embodiments, methods in accordance with this invention etch a carbon nano-tube (“CNT”) film formed over a substrate, the methods including coating the substrate with a masking layer, patterning the masking layer, and etching the CNT film through the patterned masking layer using a non-oxygen based chemistry. Other aspects are also described.
摘要:
Methods of forming memory devices, and memory devices formed in accordance with such methods, are provided, the methods including forming a via above a first conductive layer, forming a nonconformal carbon-based resistivity-switchable material layer in the via and coupled to the first conductive layer; and forming a second conductive layer in the via, above and coupled to the nonconformal carbon-based resistivity-switchable material layer. Numerous other aspects are provided.
摘要:
Forming a metal-insulator diode and carbon memory element in a single damascene process is disclosed. A trench having a bottom and a sidewall is formed in an insulator. A first diode electrode is formed in the trench during a single damascene process. A first insulating region comprising a first insulating material is formed in the trench during the single damascene process. A second insulating region comprising a second insulating material is formed in the trench during the single damascene process. A second diode electrode is formed in the trench during the single damascene process. The first insulating region and the second insulating region reside between the first diode electrode and the second diode electrode to form a metal-insulator-insulator-metal (MIIM) diode. A region of carbon is formed in the trench during the single damascene process. At least a portion of the carbon is electrically in series with the MIIM diode.
摘要:
Forming a metal-insulator diode and carbon memory element in a single damascene process is disclosed. A trench having a bottom and a sidewall is formed in an insulator. A first diode electrode is formed in the trench during a single damascene process. A first insulating region comprising a first insulating material is formed in the trench during the single damascene process. A second insulating region comprising a second insulating material is formed in the trench during the single damascene process. A second diode electrode is formed in the trench during the single damascene process. The first insulating region and the second insulating region reside between the first diode electrode and the second diode electrode to form a metal-insulator-insulator-metal (MIIM) diode. A region of carbon is formed in the trench during the single damascene process. At least a portion of the carbon is electrically in series with the MIIM diode.
摘要:
Forming a metal-insulator diode and carbon memory element in a single damascene process is disclosed. A trench having a bottom and a sidewall is formed in an insulator. A first diode electrode is formed in the trench during a single damascene process. A first insulating region comprising a first insulating material is formed in the trench during the single damascene process. A second insulating region comprising a second insulating material is formed in the trench during the single damascene process. A second diode electrode is formed in the trench during the single damascene process. The first insulating region and the second insulating region reside between the first diode electrode and the second diode electrode to form a metal-insulator-insulator-metal (MIIM) diode. A region of carbon is formed in the trench during the single damascene process. At least a portion of the carbon is electrically in series with the MIIM diode.