Abstract:
A system and method for removing fouling from a photoelectrocatalytic oxidation assembly is provided. The method includes resetting a first counter, increasing the first counter by a first channel increment value, and determining if the value in the first counter exceeds a value corresponding to the number of channels provided in the assembly. If the first counter does not exceed the number of channels, the polarity in a channel associated with the value in the first counter is reversed, and a first timer is reset. If an amount of time in the first timer does not exceed a first time period, the first timer is increased by a first time increment until the time remaining in the first timer exceeds the first time period and the polarity reversal is terminated, returning to the step of increasing the first counter by a first channel increment value.
Abstract:
The present disclosure is generally directed to devices and methods of treating aqueous solutions to help remove or otherwise reduce levels, concentrations or amounts of one or more contaminants. The present disclosure relates to a system and apparatus which is adapted to receive components including at least one counterelectrode (e.g. cathode) and at least one photoelectrode (e.g. anode) provided or arranged around at least one UV light source, and/or receive, contain and/or circulate fluid or aqueous solution.
Abstract:
The present invention relates to the removal and recovery of oil, and/or the removal and recovery of contaminants, from aqueous solutions. More specifically, the present invention relates to a system and a method for removing bacteria and recovering oil from oil and gas wastewater, produced water, and other aqueous solutions utilizing photoelectrocatalytic oxidation and suspended solids filtration.
Abstract:
A system and method for operating a photoelectrocatalytic oxidation assembly for removing fouling from components is provided. The method includes the steps of resetting a first counter, increasing the first counter by a first channel increment value, and determining if the value in the first counter exceeds a value corresponding to the number of channels provided in the photoelectrocatalytic oxidation assembly. If the first counter does not exceed a value corresponding to the number of channels provided in the photoelectrocatalytic oxidation assembly, the following steps are performed: reversing polarity in a channel associated with the value in the first counter, resetting a first timer, determining if an amount of time in the first timer exceeds a first time period, increasing the amount of time remaining in the first timer by a first time increment if the amount of time remaining in the first timer does not exceed the first time period, terminating the polarity reversal in the channel associated with the value in the first counter when the time remaining in the first timer exceeds the first time period, and returning to the step of increasing the first counter by a first channel increment value. If the first counter does exceed a value corresponding to the number of channels provided in the photoelectrocatalytic oxidation assembly, the step of returning to the step of resetting the first counter is performed.
Abstract:
A system and method for removing fouling from a photoelectrocatalytic oxidation assembly is provided. The method includes resetting a first counter, increasing the first counter by a first channel increment value, and determining if the value in the first counter exceeds a value corresponding to the number of channels provided in the assembly. If the first counter does not exceed the number of channels, the polarity in a channel associated with the value in the first counter is reversed, and a first timer is reset. If an amount of time in the first timer does not exceed a first time period, the first timer is increased by a first time increment until the time remaining in the first timer exceeds the first time period and the polarity reversal is terminated, returning to the step of increasing the first counter by a first channel increment value.
Abstract:
The present disclosure is generally directed to point of service devices and methods of treating aqueous solutions to help remove or otherwise reduce levels, concentrations or amounts of one or more contaminants. The present disclosure relates to a system including an apparatus including a substantially self-contained housing or container which is adapted to receive components including at least one counterelectrode (e.g. cathode) and at least one photoelectrode (e.g. anode) provided or arranged around at least one UV light source, and/or receive, contain and/or circulate fluid or aqueous solution.