摘要:
Techniques for adjusting transmit power to mitigate both intra-sector interference to a serving base station and inter-sector interference to neighbor base stations are described. The amount of inter-sector interference that a terminal may cause may be roughly estimated based on the total interference observed by each neighbor base station, channel gains for the serving and neighbor base stations, and the current transmit power level. The transmit power may be decreased if high interference is observed by a neighbor base station and increased otherwise. The transmit power may be adjusted by a larger amount and/or more frequently if the terminal is located closer to the neighbor base station observing high interference and/or if the current transmit power level is higher, and vice versa. The intra-sector interference is maintained within an acceptable level by limiting a received SNR for the terminal to be within a range of allowable SNRs.
摘要:
Systems and methodologies are described that facilitate efficiently providing scheduling information from an access terminal to a base station to enable effectuating scheduling decisions. Access terminals may transmit scheduling information in bifurcated requests. For instance, coarse scheduling information may be transferred utilizing a dedicated out-of-band channel, and fine scheduling information may be transmitted over an in-band channel.
摘要:
The disclosed embodiments provide for methods and systems for selecting sectors for handoff in a communication system. According to one aspect, the method includes monitoring an indicia of transmit power on a plurality of RL control channels directed to a plurality of sectors, and selecting one of the sectors as a candidate for a RL handoff. The disclosed embodiments also provide for methods and systems for indicating a selected serving sector for handoff in a communication system. According to one aspect, the method includes sending a first signal to a first sector to indicate the first sector as a serving sector for a forward-link handoff, and sending a second signal to a second sector to indicate the second sector as a serving sector for a reverse-link handoff.
摘要:
For interference control, a sector m estimates interference observed from terminals in neighbor sectors and obtains an interference estimate. Sector m may generate an over-the-air (OTA) other-sector interference (OSI) report and/or an inter-sector (IS)OSI report based on the interference estimate. Sector m may send the IS OSI report to the neighbor sectors, receive IS OSI reports from the neighbor sectors, and regulate data transmissions for terminals in sector m based on the received IS OSI reports. Sector m may control admission of terminals to sector m, de-assign admitted terminals, schedule terminals in sector m in a manner to reduce interference to the neighbor sectors, and/or assign the terminals in sector m with traffic channels that cause less interference to the neighbor sectors.
摘要:
Techniques for performing erasure detection and power control for a transmission without error detection coding are described. For erasure detection, a transmitter transmits codewords via a wireless channel. A receiver computes a metric for each received codeword, compares the computed metric against an erasure threshold, and declares the received codeword to be “erased” or “non-erased”. The receiver dynamically adjusts the erasure threshold based on received known codewords to achieve a target level of performance. For power control, an inner loop adjusts the transmit power to maintain a received signal quality (SNR) at a target SNR. An outer loop adjusts the target SNR based on the status of received codewords (erased or non-erased) to achieve a target erasure rate. A third loop adjusts the erasure threshold based on the status of received known codewords (“good”, “bad”, or erased) to achieve a target conditional error rate.
摘要:
Systems and methodologies are described that facilitate scheduling via a power control algorithm that dynamically update a scheduling metric (e.g., adjusting transmission power for sub-carriers) based on a prediction function and/or inference model of expected power requirements. In one aspect, the power prediction component can include two further components, namely: the data channel component and the control channel component—wherein a carrier to interference ratio (C/I) information is being transmitted on such control channel and the power is adjusted to obtain performance requirements. Accordingly, an efficient scheduling of users on a reverse link in an orthogonal manner can be provided, to optimally use system resources, while simultaneously: maintaining a predetermined and/or arbitrary fairness metrics, maintaining quality of service and maximizing throughput.
摘要:
Techniques for performing erasure detection and power control for a transmission without error detection coding are described. For erasure detection, a transmitter transmits codewords via a wireless channel. A receiver computes a metric for each received codeword, compares the computed metric against an erasure threshold, and declares the received codeword to be “erased” or “non-erased”. The receiver dynamically adjusts the erasure threshold based on received known codewords to achieve a target level of performance. For power control, an inner loop adjusts the transmit power to maintain a received signal quality (SNR) at a target SNR. An outer loop adjusts the target SNR based on the status of received codewords (erased or non-erased) to achieve a target erasure rate. A third loop adjusts the erasure threshold based on the status of received known codewords (“good”, “bad”, or erased) to achieve a target conditional error rate.
摘要:
Systems and methodologies are described that facilitate performing scalable transmission power offsets for an access terminal to ensure that a listening base station can hear a signal transmitted from the access terminal. The power offset is generated as a function of a reverse link channel quality indicator feedback loop to permit the access terminal to adjust transmission power sufficiently without excessive power boosting, such as can occur under a static power-boosting scheme. Monitored parameters associated with channel quality indications may comprise erasure rate indicators provided by base stations in response to CQI signals from the access terminal, as well as mean received power levels associated with superframe preamble received at the access terminal.
摘要:
For interference control, a sector m estimates interference observed from terminals in neighbor sectors and obtains an interference estimate. Sector m may generate an over-the-air (OTA) other-sector interference (OSI) report and/or an inter-sector (IS)OSI report based on the interference estimate. Sector m may send the IS OSI report to the neighbor sectors, receive IS OSI reports from the neighbor sectors, and regulate data transmissions for terminals in sector m based on the received IS OSI reports. Sector m may control admission of terminals to sector m, de-assign admitted terminals, schedule terminals in sector m in a manner to reduce interference to the neighbor sectors, and/or assign the terminals in sector m with traffic channels that cause less interference to the neighbor sectors.
摘要:
For interference control, a sector m estimates interference observed from terminals in neighbor sectors and obtains an interference estimate. Sector m may generate an over-the-air (OTA) other-sector interference (OSI) report and/or an inter-sector (IS) OSI report based on the interference estimate. Sector m may broadcast the OTA OSI report to the terminals in the neighbor sectors. These terminals may adjust their transmit powers based on the OTA OSI report. Sector m may send the IS OSI report to the neighbor sectors, recieve IS OSI reports from the neighbor sectors, and regulate data transmissions for terminals in sector m based on the received IS OSI reports. Sector m may control admission of terminals to sector m, de-assign admitted terminals, schedule terminals in sector m in a manner to reduce interference to the neighbor sectors, and/or assign the terminals in sector m with traffic channels that cause less interference to the neighbor sectors.