摘要:
The natural gas is deacidized by contacting in zone 3 with a solvent containing amine in aqueous solution. The gas is then dehydrated by contacting in zone 4 with a solvent very rich in amine. After the contacting operations, the solvent containing H2S. and water is expanded in drum 9, then regenerated in column 11. Part of the regenerated solvent is sent to zone 3. Another part of the regenerated solvent is vacuum distilled in column 18 so as to produce an amine-rich solvent that is sent to zone 4.
摘要:
The natural gas is successively contacted in column CA with a relatively methanol-rich solvent flowing in through line 4, then with a relatively poor solvent flowing in through line 9. The acid gas-containing solvent recovered through line 3 at the bottom of column CA is expanded through valves V1 and V2 to release acid gases through line 6. A fraction of the expanded solvent is distilled in column CR. The regenerated solvent obtained at the bottom of column CR is sent to the top of column CA through line 9. A second fraction of the expanded solvent is mixed with a solvent drawn off from column CR at an intermediate point between the bottom and the top of this column. This mixture of solvents is sent through line 4 into column CA.
摘要:
The mercaptan-laden natural gas is contacted with a mercaptan-adsorbing sieve T1. The mercaptan-rich gaseous effluent obtained upon regeneration of sieve T2 is then contacted with an olefin-containing liquid feed in the presence of an acid catalyst. Under suitable conditions, the mercaptans are absorbed in the liquid feed and they react with the olefins so as to form solvent-soluble sulfides. A solvent regeneration stage allows the capture agent to be recycled.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in zone C. The solvent charged with acid compounds is regenerated in zone R. The acid gases, released into pipe 5 upon regeneration, include a quantity of solvent. The method enables the solvent contained in the acid gases to be extracted. In zone ZA, the acid gases are brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent is removed from the acid gases evacuated through pipe 6. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The ionic liquid regenerated is recycled through pipes 8 and 9 to zone ZA. The solvent is evacuated through pipe 13.
摘要:
The invention relates to a method of pretreating a natural gas, water-saturated or not, essentially comprising hydrocarbons, a substantial amount of hydrogen sulfide and possibly carbon dioxide. The method according to the invention comprises an H2S-rich stream recycling stage.
摘要:
The raw natural gas is pretreated in treating unit 30. The treated gas is then purified by adsorption of the mercaptans in first enclosure 31. The various cuts that make up the purified gas are separated in fractionating unit 34. Part of the methane making up the purified gas is saturated with a C5+ hydrocarbon in contactor 33, then it is fed into second enclosure 32 so as to regenerate the adsorbent material contained in this second enclosure. The gas from the second enclosure is washed in unit 35, then recycled.
摘要:
The gaseous feed flowing in through line 1 is contacted in contacting zone ZA with a liquid solvent flowing in through line 2. The solvent comprises between 0.001% and 100% by weight of a liquid olefin. Contacting in zone ZA is carried out in the presence of an acid catalyst. The purified gaseous feed is discharged from zone ZA through line 3. The sulfide-laden solvent is discharged through line 4, then regenerated in unit RE. The regenerated solvent is recycled through lines 7 and 2 to zone ZA.
摘要:
The natural gas arriving through pipe 1 is deacidified by being brought into contact with a solvent in column C2. The solvent charged with acid compounds is regenerated in zone R. The purified gas evacuated by pipe 9 includes some of the solvent. The method enables the solvent contained in the purified gas to be extracted. In zone ZA, the purified gas is brought into contact with a non-aqueous ionic liquid whose general formula is Q+ A−, where Q+ designates an ammonium, phosphonium, and/or sulfonium cation, and A− designates an anion able to form a liquid salt. The solvent-impoverished purified gas is evacuated through pipe 17. The ionic liquid charged with solvent is regenerated by heating in an evaporator DE. The solvents separated from the ionic liquid in evaporator DE are recycled.
摘要:
The present invention aims to isolate the azeotropes formed in a distillation column (B1) by methanol, propane and butane. The azeotropes are then liquefied in heat exchanger (E2) and mixed in contactor (M1) with water in order to dissolve the methanol in water. The mixture is then fed into a decantation tank (D2) to separate the aqueous phase from the liquid hydrocarbon phase. Finally, an aqueous phase containing methanol is discharged and the methanol-depleted hydrocarbon phase is recycled to distillation column (B1) as reflux.
摘要:
The raw natural gas is deacidized and dehydrated in units DA and DH. The treated gas is then purified by adsorption of the mercaptans in first enclosure A1. Part of the purified gas is heated in E1, then fed into second enclosure A2 so as to discharge the water adsorbed by the adsorbent material contained in this second enclosure. A steam-rich stream is fed into third enclosure A3 containing a mercaptan-laden adsorbent material. In A3, the mercaptans are desorbed and replaced by the steam.